Motion as a source of environmental information: a fresh view on biological motion computation by insect brains

Egelhaaf M, Kern R, Lindemann JP (2014)
Frontiers in Neural Circuits 8: 127.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Despite their miniature brains insects, such as flies, bees and wasps, are able to navigate by highly erobatic flight maneuvers in cluttered environments. They rely on spatial information that is contained in the retinal motion patterns induced on the eyes while moving around (“optic flow”) to accomplish their extraordinary performance. Thereby, they employ an active flight and gaze strategy that separates rapid saccade-like turns from translatory flight phases where the gaze direction is kept largely constant. This behavioral strategy facilitates the processing of environmental information, because information about the distance of the animal to objects in the environment is only contained in the optic flow generated by translatory motion. However, motion detectors as are widespread in biological systems do not represent veridically the velocity of the optic flow vectors, but also reflect textural information about the environment. This characteristic has often been regarded as a limitation of a biological motion detection mechanism. In contrast, we conclude from analyses challenging insect movement detectors with image flow as generated during translatory locomotion through cluttered natural environments that this mechanism represents the contours of nearby objects. Contrast borders are a main carrier of functionally relevant object information in artificial and natural sceneries. The motion detection system thus segregates in a computationally parsimonious way the environment into behaviorally relevant nearby objects and—in many behavioral contexts—less relevant distant structures. Hence, by making use of an active flight and gaze strategy, insects are capable of performing extraordinarily well even with a computationally simple motion detection mechanism.
insects; spatial vision; motion detection; natural environments; optic flow
Frontiers in Neural Circuits
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Egelhaaf M, Kern R, Lindemann JP. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains. Frontiers in Neural Circuits. 2014;8:127.
Egelhaaf, M., Kern, R., & Lindemann, J. P. (2014). Motion as a source of environmental information: a fresh view on biological motion computation by insect brains. Frontiers in Neural Circuits, 8, 127. doi:10.3389/fncir.2014.00127
Egelhaaf, Martin, Kern, Roland, and Lindemann, Jens Peter. 2014. “Motion as a source of environmental information: a fresh view on biological motion computation by insect brains”. Frontiers in Neural Circuits 8: 127.
Egelhaaf, M., Kern, R., and Lindemann, J. P. (2014). Motion as a source of environmental information: a fresh view on biological motion computation by insect brains. Frontiers in Neural Circuits 8, 127.
Egelhaaf, M., Kern, R., & Lindemann, J.P., 2014. Motion as a source of environmental information: a fresh view on biological motion computation by insect brains. Frontiers in Neural Circuits, 8, p 127.
M. Egelhaaf, R. Kern, and J.P. Lindemann, “Motion as a source of environmental information: a fresh view on biological motion computation by insect brains”, Frontiers in Neural Circuits, vol. 8, 2014, pp. 127.
Egelhaaf, M., Kern, R., Lindemann, J.P.: Motion as a source of environmental information: a fresh view on biological motion computation by insect brains. Frontiers in Neural Circuits. 8, 127 (2014).
Egelhaaf, Martin, Kern, Roland, and Lindemann, Jens Peter. “Motion as a source of environmental information: a fresh view on biological motion computation by insect brains”. Frontiers in Neural Circuits 8 (2014): 127.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Spiking Elementary Motion Detector in Neuromorphic Systems.
Milde MB, Bertrand OJN, Ramachandran H, Egelhaaf M, Chicca E., Neural Comput 30(9), 2018
PMID: 30021082
Peripheral Processing Facilitates Optic Flow-Based Depth Perception.
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
Editorial: What can simple brains teach us about how vision works.
Zoccolan D, Cox DD, Benucci A., Front Neural Circuits 9(), 2015
PMID: 26483639

161 References

Daten bereitgestellt von Europe PubMed Central.

Contrast-independent biologically inspired motion detection.
Babies B, Lindemann JP, Egelhaaf M, Moller R., Sensors (Basel) 11(3), 2011
PMID: 22163800
A universal strategy for visually guided landing.
Baird E, Boeddeker N, Ibbotson MR, Srinivasan MV., Proc. Natl. Acad. Sci. U.S.A. 110(46), 2013
PMID: 24167269
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird E, Kornfeldt T, Dacke M., J. Exp. Biol. 213(Pt 10), 2010
PMID: 20435812
Visual control of flight speed in honeybees.
Baird E, Srinivasan MV, Zhang S, Cowling A., J. Exp. Biol. 208(Pt 20), 2005
PMID: 16215217
Visual control of flight speed and height in the honeybee
Baird, 2006
Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordstrom K, O'Carroll DC., Curr. Biol. 20(11), 2010
PMID: 20537540
Performance of optic flow techniques
Barron, Int. J. Comput. Vis. 12(), 1994
The computation of optical flow
Beauchemin, ACM Comput. Surv. 27(), 1995
Processing properties of ON and OFF pathways for Drosophila motion detection.
Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C., Nature 512(7515), 2014
PMID: 25043016
A fast and simple population code for orientation in primate V1.
Berens P, Ecker AS, Cotton RJ, Ma WJ, Bethge M, Tolias AS., J. Neurosci. 32(31), 2012
PMID: 22855811
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Visual gaze control during peering flight manoeuvres in honeybees.
Boeddeker N, Hemmi JM., Proc. Biol. Sci. 277(1685), 2009
PMID: 20007175
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(12), 2005
PMID: 16133502
Models of motion detection.
Borst A., Nat. Neurosci. 3 Suppl(), 2000
PMID: 11127831
Modelling fly motion vision
Borst, 2004
Fly visual course control: behaviour, algorithms and circuits.
Borst A., Nat. Rev. Neurosci. 15(9), 2014
PMID: 25116140
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Detecting visual motion: theory and models
Borst, 1993
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Bio-inspired model for robust motion detection under noisy conditions
Brinkworth, 2010
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Fundamental mechanisms of visual motion detection: models, cells and functions.
Clifford CW, Ibbotson MR., Prog. Neurobiol. 68(6), 2002
PMID: 12576294
Peering—a locust behavior pattern for obtaining motion parallax information
Collett, J. Exp. Biol. 76(), 1978
Coordinating compass-based and nest-based flight directions during bumblebee learning and return flights.
Collett TS, de Ibarra NH, Riabinina O, Philippides A., J. Exp. Biol. 216(Pt 6), 2013
PMID: 23447669
Navigational memories in ants and bees: memory retrieval when selecting and following routes.
Collett TS, Graham P, Harris RA, Hempel-De-Ibarra N., Advances in the study of behavior. 36(), 2006
PMID: IND43867117
The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees.
Collett M, Harland D, Collett TS., J. Exp. Biol. 205(Pt 6), 2002
PMID: 11914389
Relative motion parallax and target localization in the locust, Schistocerca gregaria
Collett, J. Comp. Physiol. A 169(), 1991
Flights of learning
Collett, Curr. Dir. Psychol. Sci. 5(), 1996
Extracting ego-motion from optic flow: limits of accuracy and neuronal filters
Dahmen, 2000
Competition between fixed and moving stripes in the control of orientation by flying Drosophila
David, Physiol. Entomol. 7(), 1982
The behavioral relevance of landmark texture for honeybee homing.
Dittmar L, Egelhaaf M, Sturzl W, Boeddeker N., Front Behav Neurosci 5(), 2011
PMID: 21541258
Goal seeking in honeybees: matching of optic flow snapshots?
Dittmar L, Sturzl W, Baird E, Boeddeker N, Egelhaaf M., J. Exp. Biol. 213(Pt 17), 2010
PMID: 20709919
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
A stingless bee can use visual odometry to estimate both height and distance.
Eckles MA, Roubik DW, Nieh JC., J. Exp. Biol. 215(Pt 18), 2012
PMID: 22915710
The neural computation of visual motion
Egelhaaf, 2006
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Movement detection in arthropods
Egelhaaf, 1993
Honeybee dances communicate distances measured by optic flow.
Esch HE, Zhang S, Srinivasan MV, Tautz J., Nature 411(6837), 2001
PMID: 11385571
The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera.
Evangelista C, Kraft P, Dacke M, Reinhard J, Srinivasan MV., J. Exp. Biol. 213(2), 2010
PMID: 20038660
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
The response of the hovering hawk moth Macroglossum stellatarum to translatory pattern motion
Farina, J. Comp. Physiol. 176(), 1995
Optic flow estimation
Fleet, 2005
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
GABAergic lateral interactions tune the early stages of visual processing in Drosophila.
Freifeld L, Clark DA, Schnitzer MJ, Horowitz MA, Clandinin TR., Neuron 78(6), 2013
PMID: 23791198
Visual control of flight speed in Drosophila melanogaster.
Fry SN, Rohrseitz N, Straw AD, Dickinson MH., J. Exp. Biol. 212(Pt 8), 2009
PMID: 19329746
Visual edge orientation shapes free-flight behavior in Drosophila.
Frye MA, Dickinson MH., Fly (Austin) 1(3), 2007
PMID: 18820449
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Cardinal rules: visual orientation perception reflects knowledge of environmental statistics.
Girshick AR, Landy MS, Simoncelli EP., Nat. Neurosci. 14(7), 2011
PMID: 21642976
Principles of optomotor reactions in insects.
Gotz KG., Bibl Ophthalmol 82(), 1972
PMID: 4568577
Monocular and binocular computation of motion in the lobula plate of the fly
Hausen, Negot. German Zool. Soc. 74(), 1981
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
Heitwerth J, Kern R, van Hateren JH, Egelhaaf M., J. Neurophysiol. 94(3), 2005
PMID: 15917319
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Subcellular mapping of dendritic activity in optic flow processing neurons.
Hopp E, Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 200(5), 2014
PMID: 24647929
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Functional specialization of parallel motion detection circuits in the fly.
Joesch M, Weber F, Eichner H, Borst A., J. Neurosci. 33(3), 2013
PMID: 23325229
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J. Neurophysiol. 90(3), 2003
PMID: 12736239
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Object detection by relative motion in freely flying flies
Kimmerle, Nat. Sci. 83(), 1996
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
Motion parallax as a source of distance information in locusts and mantids.
Krahl K, Poteser M., Journal of insect behavior. 10(1), 1997
PMID: IND20594130
Neuronal matched filters for optic flow processing in flying insects
Krapp, 2000
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Adaptive encoding of motion information in the fly visual system
Kurtz, 2012
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791

Lappe, 2000
Bees which turn back and look
Lehrer, Nat. Sci. 78(), 1991
Approaching and departing bees learn different cues to the distance of a landmark
Lehrer, J. Comp. Physiol. A 175(), 1994
Motion cues provide the bee’s visual world with a third dimension
Lehrer, Nature 332(), 1988
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Moller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
Saccadic flight strategy facilitates collision avoidance: closed-loop simulation of a cyberfly
Lindemann, Biol. Cybern. 106(), 2012
Nutritional state modulates the neural processing of visual motion.
Longden KD, Muzzu T, Cook DJ, Schultz SR, Krapp HG., Curr. Biol. 24(8), 2014
PMID: 24684935
The interpretation of a moving retinal image.
Longuet-Higgins HC, Prazdny K., Proc. R. Soc. Lond., B, Biol. Sci. 208(1173), 1980
PMID: 6106198
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc. R. Soc. Lond. B Biol. Sci. 225(), 1985
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
A directional tuning map of Drosophila elementary motion detectors.
Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A., Nature 500(7461), 2013
PMID: 23925246

Marr, 1982
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision.
Mauss AS, Meier M, Serbe E, Borst A., J. Neurosci. 34(6), 2014
PMID: 24501364
Performance of optical flow techniques for indoor navigation with a mobile robot
McCarthy, 2004
Neural circuit components of the Drosophila OFF motion vision pathway.
Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A., Curr. Biol. 24(4), 2014
PMID: 24508173
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
The free-flight response of Drosophila to motion of the visual environment.
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291
Prey size selection and distance estimation in foraging adult dragonflies.
Olberg RM, Worthington AH, Fox JL, Bessette CE, Loosemore MP., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(9), 2005
PMID: 16034603
Bumblebee calligraphy: the design and control of flight motifs in the learning and return flights of Bombus terrestris.
Philippides A, de Ibarra NH, Riabinina O, Collett TS., J. Exp. Biol. 216(Pt 6), 2013
PMID: 23447668
Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.
Portelli G, Ruffier F, Roubieu FL, Franceschini N., PLoS ONE 6(5), 2011
PMID: 21589861
Egomotion and relative depth map from optical flow.
Prazdny K., Biol Cybern 36(2), 1980
PMID: 7353067
Implementation of saturation for modelling pattern noise using naturalistic stimuli
Rajesh, 2006
Autocorrelation, a principle for the evaluation of sensory information by the central nervous system
Reichardt, 1961
A test bed for insect-inspired robotic control.
Reiser MB, Dickinson MH., Philos Trans A Math Phys Eng Sci 361(1811), 2003
PMID: 14599319
Head movements and the optic flow generated during the learning flights of bumblebees.
Riabinina O, de Ibarra NH, Philippides A, Collett TS., J. Exp. Biol. 217(Pt 15), 2014
PMID: 25079890
Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects.
Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I., J. Exp. Biol. 212(Pt 9), 2009
PMID: 19376953
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Honeybee navigation: properties of the visually driven 'odometer'.
Si A, Srinivasan MV, Zhang S., J. Exp. Biol. 206(Pt 8), 2003
PMID: 12624162
Modular use of peripheral input channels tunes motion-detecting circuitry.
Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR., Neuron 79(1), 2013
PMID: 23849199
Natural image statistics and neural representation.
Simoncelli EP, Olshausen BA., Annu. Rev. Neurosci. 24(), 2001
PMID: 11520932
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
The locust's use of motion parallax to measure distance.
Sobel EC., J. Comp. Physiol. A 167(5), 1990
PMID: 2074547
How honeybees measure their distance from objects of unknown size
Srinivasan, J. Comp. Physiol. A 165(), 1989
Visually mediated odometry in honeybees
Srinivasan M, Zhang S, Bidwell N., J. Exp. Biol. 200(Pt 19), 1997
PMID: 9320443
Landing strategies in honeybees, and possible applications to autonomous airborne vehicles.
Srinivasan MV, Zhang S, Chahl JS., Biol. Bull. 200(2), 2001
PMID: 11341587
How honeybees make grazing landings on flat surfaces.
Srinivasan MV, Zhang SW, Chahl JS, Barth E, Venkatesh S., Biol Cybern 83(3), 2000
PMID: 11007294
Honeybee navigation en route to the goal: visual flight control and odometry
Srinivasan M, Zhang S, Lehrer M, Collett T., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317712
Visual control of altitude in flying Drosophila.
Straw AD, Lee S, Dickinson MH., Curr. Biol. 20(17), 2010
PMID: 20727759
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Direct observation of ON and OFF pathways in the Drosophila visual system.
Strother JA, Nern A, Reiser MB., Curr. Biol. 24(9), 2014
PMID: 24704075
Honeybee odometry: performance in varying natural terrain.
Tautz J, Zhang S, Spaethe J, Brockmann A, Si A, Srinivasan M., PLoS Biol. 2(7), 2004
PMID: 15252454
Sensory systems and flight stability: what do insects measure and why?
Taylor GK, Krapp HG., Advances in insect physiology. 34(), 2008
PMID: IND44011217
Contributions of the 12 neuron classes in the fly lamina to motion vision.
Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB., Neuron 79(1), 2013
PMID: 23849200
Influence of environmental information in natural scenes and the effects of 1 motion adaptation on a fly motion-sensitive neuron during simulated flight
Ullrich, Biol. Open (), 2014

Vaina, 2004
The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster.
van Breugel F, Dickinson MH., J. Exp. Biol. 215(Pt 11), 2012
PMID: 22573757
Blowfly flight and optic flow. II. Head movements during flight
van, J. Exp. Biol. 202(), 1999
Flow-field variables trigger landing in flies
Wagner, Nature 297(), 1982
Temperature-dependence of neuronal performance in the motion pathway of the blowfly calliphora erythrocephala
Warzecha A, Horstmann W, Egelhaaf M., J. Exp. Biol. 202 Pt 22(), 1999
PMID: 10539965
Desert ant navigation: how miniature brains solve complex tasks.
Wehner R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(8), 2003
PMID: 12879352
Robust coding of ego-motion in descending neurons of the fly.
Wertz A, Gaub B, Plett J, Haag J, Borst A., J. Neurosci. 29(47), 2009
PMID: 19940195
A model for the detection of moving targets in visual clutter inspired by insect physiology.
Wiederman SD, Shoemaker PA, O'Carroll DC., PLoS ONE 3(7), 2008
PMID: 18665213
Odometry and insect navigation.
Wolf H., J. Exp. Biol. 214(Pt 10), 2011
PMID: 21525309
Motion segmentation: a review
Zappella, 2008
Orientation flights of solitary wasps (Cerceris, Sphecidae, Hymenoptera). I. Description of flights
Zeil, J. Comp. Physiol. A 172(), 1993
Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). II. Similarities between orientation and return flights and the use of motion parallax
Zeil, J. Comp. Physiol. A 172(), 1993
Visual homing: an insect perspective.
Zeil J., Curr. Opin. Neurobiol. 22(2), 2012
PMID: 22221863
Visual Homing in Insects and Robots
Zeil, 2009
Structure and function of learning flights in ground-nesting bees and wasps
Zeil J, Kelber A, Voss R., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317729

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 25389392
PubMed | Europe PMC

Suchen in

Google Scholar