Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics

Schwegmann A, Lindemann JP, Egelhaaf M (2014)
PLoS ONE 9(10): e110386.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image parameters define the temporal constraints imposed on signal processing performed by the insect visual system under behavioral conditions in natural environments.
Erscheinungsjahr
Zeitschriftentitel
PLoS ONE
Band
9
Ausgabe
10
Seite(n)
e110386
ISSN
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Schwegmann A, Lindemann JP, Egelhaaf M. Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics. PLoS ONE. 2014;9(10):e110386.
Schwegmann, A., Lindemann, J. P., & Egelhaaf, M. (2014). Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics. PLoS ONE, 9(10), e110386. doi:10.1371/journal.pone.0110386
Schwegmann, A., Lindemann, J. P., and Egelhaaf, M. (2014). Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics. PLoS ONE 9, e110386.
Schwegmann, A., Lindemann, J.P., & Egelhaaf, M., 2014. Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics. PLoS ONE, 9(10), p e110386.
A. Schwegmann, J.P. Lindemann, and M. Egelhaaf, “Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics”, PLoS ONE, vol. 9, 2014, pp. e110386.
Schwegmann, A., Lindemann, J.P., Egelhaaf, M.: Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics. PLoS ONE. 9, e110386 (2014).
Schwegmann, Alexander, Lindemann, Jens Peter, and Egelhaaf, Martin. “Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics”. PLoS ONE 9.10 (2014): e110386.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2014-10-30T09:20:06Z

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Peripheral Processing Facilitates Optic Flow-Based Depth Perception.
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631

101 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Visual control of flight behaviour in the hoverfly Syritta pipiens L. J Comp Physiol
AUTHOR UNKNOWN, 1975
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
The free-flight response of Drosophila to motion of the visual environment.
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291

AUTHOR UNKNOWN, 0
The fine structure of honeybee head and body yaw movements in a homing task
AUTHOR UNKNOWN, 2010
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Visual homing: an insect perspective.
Zeil J., Curr. Opin. Neurobiol. 22(2), 2012
PMID: 22221863
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
The challenges natural images pose for visual adaptation.
Rieke F, Rudd ME., Neuron 64(5), 2009
PMID: 20005818
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763
The world from a cat's perspective--statistics of natural videos.
Betsch BY, Einhauser W, Kording KP, Konig P., Biol Cybern 90(1), 2004
PMID: 14762723

AUTHOR UNKNOWN, 0
Visual perception and the statistical properties of natural scenes.
Geisler WS., Annu Rev Psychol 59(), 2008
PMID: 17705683
The statistics of natural images
AUTHOR UNKNOWN, 1994
Statistics of natural images and models
AUTHOR UNKNOWN, 1999
Effect of tracking strategies on the velocity structure of two-dimensional image sequences
AUTHOR UNKNOWN, 1993
Local luminance and contrast in natural images.
Frazor RA, Geisler WS., Vision Res. 46(10), 2006
PMID: 16403546
Miniature eye movements enhance fine spatial detail.
Rucci M, Iovin R, Poletti M, Santini F., Nature 447(7146), 2007
PMID: 17568745
Image statistics at the point of gaze during human navigation.
Rothkopf CA, Ballard DH., Vis. Neurosci. 26(1), 2009
PMID: 19309533
Temporal properties of natural scenes
AUTHOR UNKNOWN, 1996
A glimpse into crabworld.
Zeil J, Zanker JM., Vision Res. 37(23), 1997
PMID: 9425554

AUTHOR UNKNOWN, 0
The visual ecology of fiddler crabs.
Zeil J, Hemmi JM., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(1), 2005
PMID: 16341863
Variation in the local motion statistics of real-life optic flow scenes.
Durant S, Zanker JM., Neural Comput 24(7), 2012
PMID: 22428592
Statistics of natural time-varying images
AUTHOR UNKNOWN, 1995
Electrophysiological analysis of the fly retina. I. Comparative properties of R1-6 and R7 and R8
AUTHOR UNKNOWN, 1979
Colour in the eyes of insects
AUTHOR UNKNOWN, 2002
Mimicking honeybee eyes with a 280 degrees field of view catadioptric imaging system.
Sturzl W, Boeddeker N, Dittmar L, Egelhaaf M., Bioinspir Biomim 5(3), 2010
PMID: 20689158
Retinal lattice, visual field and binocularities in flies
AUTHOR UNKNOWN, 1977
Maps of the acute zones of fly eyes
AUTHOR UNKNOWN, 1985
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Power spectra of the natural input to the visual system.
Pamplona D, Triesch J, Rothkopf CA., Vision Res. 83(), 2013
PMID: 23458676

AUTHOR UNKNOWN, 0
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763
Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation
AUTHOR UNKNOWN, 1992
Statistics of natural images: Scaling in the woods.
Ruderman DL, Bialek W., Phys. Rev. Lett. 73(6), 1994
PMID: 10057546
Modeling the shape of the scene: A holistic representation of the spatial envelope
AUTHOR UNKNOWN, 2001
The distribution of oriented contours in the real world.
Coppola DM, Purves HR, McCoy AN, Purves D., Proc. Natl. Acad. Sci. U.S.A. 95(7), 1998
PMID: 9520482
A statistical basis for visual field anisotropies
AUTHOR UNKNOWN, 2006

AUTHOR UNKNOWN, 0
Amplitude spectra of natural images.
Tolhurst DJ, Tadmor Y, Chao T., Ophthalmic Physiol Opt 12(2), 1992
PMID: 1408179
The role of retinula cell types in visual behavior of Drosophila melanogaster
AUTHOR UNKNOWN, 1977
Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster.
Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M., Neuron 56(1), 2007
PMID: 17920022
Motion vision is independent of color in Drosophila
AUTHOR UNKNOWN, 2008
Multiple spectral inputs improve motion discrimination in the Drosophila visual system.
Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O'Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M., Science 336(6083), 2012
PMID: 22605779

AUTHOR UNKNOWN, 0
Insects could exploit UV-green contrast for landmark navigation
AUTHOR UNKNOWN, 2002
Feature-detecting neurons in dragonflies
AUTHOR UNKNOWN, 1993
Neural mechanisms of orientation selectivity in the visual cortex.
Ferster D, Miller KD., Annu. Rev. Neurosci. 23(), 2000
PMID: 10845071
Neuronal representation of visual motion and orientation in the fly medulla.
Spalthoff C, Gerdes R, Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23087615
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths
AUTHOR UNKNOWN, 2005
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Neural Coding
AUTHOR UNKNOWN, 1968
Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly's eye
AUTHOR UNKNOWN, 1994
Information theory and neural coding
AUTHOR UNKNOWN, 1999

AUTHOR UNKNOWN, 0
Sensory adaptation.
Wark B, Lundstrom BN, Fairhall A., Curr. Opin. Neurobiol. 17(4), 2007
PMID: 17714934
Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors.
Juusola M, Kouvalainen E, Jarvilehto M, Weckstrom M., J. Gen. Physiol. 104(3), 1994
PMID: 7807062
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948

AUTHOR UNKNOWN, 0
Fast and slow photoreceptors - a comparative study of the functional diversity of coding and conductances in the Diptera
AUTHOR UNKNOWN, 1993
Spatio-temporal properties of motion detectors matched to low image velocities in hovering insects.
O'Carroll DC, Laughlin SB, Bidwell NJ, Harris RA., Vision Res. 37(23), 1997
PMID: 9425555
Sexual dimorphism matches photoreceptor performance to behavioural requirements
AUTHOR UNKNOWN, 2000

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I dynamics.
Zheng L, Nikolaev A, Wardill TJ, O'Kane CJ, de Polavieja GG, Juusola M., PLoS ONE 4(1), 2009
PMID: 19180196
Visual adaptation as optimal information transmission.
Wainwright MJ., Vision Res. 39(23), 1999
PMID: 10748928
Towards a theory of early visual processing
AUTHOR UNKNOWN, 1990
Spatiotemporal contrast sensitivity of early vision.
Van Hateren JH., Vision Res. 33(2), 1993
PMID: 8447098
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Neural networks in the cockpit of the fly
AUTHOR UNKNOWN, 2002
Sensory systems and flight stability: What do insects measure and why?
AUTHOR UNKNOWN, 2008
Fly motion vision: from optic flow to visual course control
AUTHOR UNKNOWN, 2012
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
Accuracy of velocity estimation by Reichardt correlators
AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25340761
PubMed | Europe PMC

Suchen in

Google Scholar