SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana

Johansson M, Staiger D (2014)
Journal of Experimental Botany 65(20): 5811-5822.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Timing of flowering is determined by environmental and developmental signals, leading to promotion or repression of key floral integrators. SENSITIVITY TO RED LIGHT REDUCED (SRR1) is a pioneer protein previously shown to be involved in regulation of the circadian clock and phytochrome B signalling in Arabidopsis thaliana. This report has examined the role of SRR1 in flowering time control. Loss-of-function srr1-1 plants flowered very early compared with the wild type under short-day conditions and had a weak flowering response to increasing daylength. Furthermore, FLOWERING LOCUS T (FT) transcript levels were elevated already in short days in srr1-1 compared with the wild type. This correlated with elevated end of day levels of CONSTANS (CO), whereas levels of CYCLING DOF FACTOR 1 (CDF1), a repressor of CO transcription, were reduced. srr1-1 gi-2 and srr1-1 co-9 double mutants showed that SRR1 can also repress flowering independently of the photoperiodic pathway. srr1-1 flowered consistently early between 16 °C and 27 °C, showing that SRR1 prevents premature flowering over a wide temperature range. SRR1 also promotes expression of the repressors TEMPRANILLO 1 (TEM1) and TEM2. Consequently their targets in the gibberellin biosynthesis pathway were elevated in srr1-1. SRR1 is thus an important focal point of both photoperiodic and photoperiod-independent regulation of flowering. By stimulating expression of the FT-binding repressors CDF1, TEM1 and TEM2, and FLC, flowering is inhibited in non-inductive conditions.
Erscheinungsjahr
Zeitschriftentitel
Journal of Experimental Botany
Band
65
Ausgabe
20
Seite(n)
5811-5822
ISSN
eISSN
PUB-ID

Zitieren

Johansson M, Staiger D. SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana. Journal of Experimental Botany. 2014;65(20):5811-5822.
Johansson, M., & Staiger, D. (2014). SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana. Journal of Experimental Botany, 65(20), 5811-5822. doi:10.1093/jxb/eru317
Johansson, M., and Staiger, D. (2014). SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana. Journal of Experimental Botany 65, 5811-5822.
Johansson, M., & Staiger, D., 2014. SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana. Journal of Experimental Botany, 65(20), p 5811-5822.
M. Johansson and D. Staiger, “SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana”, Journal of Experimental Botany, vol. 65, 2014, pp. 5811-5822.
Johansson, M., Staiger, D.: SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana. Journal of Experimental Botany. 65, 5811-5822 (2014).
Johansson, Mikael, and Staiger, Dorothee. “SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana”. Journal of Experimental Botany 65.20 (2014): 5811-5822.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
Post-polyploidisation morphotype diversification associates with gene copy number variation.
Schiessl S, Huettel B, Kuehn D, Reinhardt R, Snowdon R., Sci Rep 7(), 2017
PMID: 28165502
The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms.
Adachi Y, Umeda M, Kawazoe A, Sato T, Ohkawa Y, Kitajima S, Izawa S, Sagami I, Taketani S., Arch Biochem Biophys 631(), 2017
PMID: 28802827
LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
Park MJ, Kwon YJ, Gil KE, Park CM., BMC Plant Biol 16(1), 2016
PMID: 27207270
Time to flower: interplay between photoperiod and the circadian clock.
Johansson M, Staiger D., J Exp Bot 66(3), 2015
PMID: 25371508

60 References

Daten bereitgestellt von Europe PubMed Central.

FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T., Science 309(5737), 2005
PMID: 16099979
Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis.
Alabadi D, Yanovsky MJ, Mas P, Harmer SL, Kay SA., Curr. Biol. 12(9), 2002
PMID: 12007421
FLC or not FLC: the other side of vernalization.
Alexandre CM, Hennig L., J. Exp. Bot. 59(6), 2008
PMID: 18390846
Seasonal and developmental timing of flowering.
Amasino R., Plant J. 61(6), 2010
PMID: 20409274
The genetic basis of flowering responses to seasonal cues
Andrés F, Coupland G., 2012
Potent induction of Arabidopsis thaliana flowering by elevated growth temperature.
Balasubramanian S, Sureshkumar S, Lempe J, Weigel D., PLoS Genet. 2(7), 2006
PMID: 16839183
A thermosensory pathway controlling flowering time in Arabidopsis thaliana.
Blazquez MA, Ahn JH, Weigel D., Nat. Genet. 33(2), 2003
PMID: 12548286
Linkage and association mapping of Arabidopsis thaliana flowering time in nature.
Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F., PLoS Genet. 6(5), 2010
PMID: 20463887
Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day.
Corbesier L, Gadisseur I, Silvestre G, Jacqmard A, Bernier G., Plant J. 9(6), 1996
PMID: 8696370
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock.
Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ., Plant Cell 18(3), 2006
PMID: 16473970
The evolutionary conserved BER1 gene is involved in microtubule stability in yeast.
Fiechter V, Cameroni E, Cerutti L, De Virgilio C, Barral Y, Fankhauser C., Curr. Genet. 53(2), 2007
PMID: 18064466
Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response.
Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G., Dev. Cell 17(1), 2009
PMID: 19619493
GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains.
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J., EMBO J. 18(17), 1999
PMID: 10469647
EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock.
Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Goncalves J, Davis SJ., Plant Cell 24(2), 2012
PMID: 22327739
FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis.
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA., Science 309(5732), 2005
PMID: 16002617
FT protein acts as a long-range signal in Arabidopsis.
Jaeger KE, Wigge PA., Curr. Biol. 17(12), 2007
PMID: 17540569
The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis.
Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM., Plant Cell 19(9), 2007
PMID: 17890372
Vernalization: winter and the timing of flowering in plants.
Kim DH, Doyle MR, Sung S, Amasino RM., Annu. Rev. Cell Dev. Biol. 25(), 2009
PMID: 19575660
Integrating ELF4 into the circadian system through combined structural and functional studies.
Kolmos E, Nowak M, Werner M, Fischer K, Schwarz G, Mathews S, Schoof H, Nagy F, Bujnicki JM, Davis SJ., HFSP J 3(5), 2009
PMID: 20357892
Regulation of temperature-responsive flowering by MADS-box transcription factor repressors.
Lee JH, Ryu HS, Chung KS, Pose D, Kim S, Schmid M, Ahn JH., Science 342(6158), 2013
PMID: 24030492
Role of SVP in the control of flowering time by ambient temperature in Arabidopsis.
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH., Genes Dev. 21(4), 2007
PMID: 17322399
Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana.
Locke JC, Kozma-Bognar L, Gould PD, Feher B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ., Mol. Syst. Biol. 2(), 2006
PMID: 17102804
Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis.
Mathieu J, Warthmann N, Kuttner F, Schmid M., Curr. Biol. 17(12), 2007
PMID: 17540570
The genetics of plant clocks.
McClung CR., Adv. Genet. 74(), 2011
PMID: 21924976
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth.
Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farre EM, Kay SA., Nature 475(7356), 2011
PMID: 21753751
TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis.
Osnato M, Castillejo C, Matias-Hernandez L, Pelaz S., Nat Commun 3(), 2012
PMID: 22549837
Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model.
Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno T, Millar AJ., Mol. Syst. Biol. 6(), 2010
PMID: 20865009
Temperature-dependent regulation of flowering by antagonistic FLM variants.
Pose D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RG, Schmid M., Nature 503(7476), 2013
PMID: 24067612
GIGANTEA directly activates flowering locus T in Arabidopsis thaliana
Sawa M, Kay SA., 2011
FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis.
Sawa M, Nusinow DA, Kay SA, Imaizumi T., Science 318(5848), 2007
PMID: 17872410
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis.
Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G., Genes Dev. 20(7), 2006
PMID: 16600915
TEMPRANILLO is a regulator of juvenility in plants.
Sgamma T, Jackson A, Muleo R, Thomas B, Massiah A., Sci Rep 4(), 2014
PMID: 24424565
FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering.
Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T., Science 336(6084), 2012
PMID: 22628657
Regulation of flowering time: all roads lead to Rome.
Srikanth A, Schmid M., Cell. Mol. Life Sci. 68(12), 2011
PMID: 21611891
The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function.
Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C., Genes Dev. 17(2), 2003
PMID: 12533513
The circadian clock goes genomic.
Staiger D, Shin J, Johansson M, Davis SJ., Genome Biol. 14(6), 2013
PMID: 23796230
Determination of photoperiodic flowering time control in Arabidopsis and barley.
Steffen A, Fischer A, Staiger D., Methods Mol. Biol. 1158(), 2014
PMID: 24792059
Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog.
Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA., Science 289(5480), 2000
PMID: 10926537
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schoning JC, Alfano JR, Staiger D., Plant J. 56(2), 2008
PMID: 18573194
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis.
Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G., Nature 410(6832), 2001
PMID: 11323677
Photoreceptor regulation of CONSTANS protein in photoperiodic flowering.
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G., Science 303(5660), 2004
PMID: 14963328
A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene.
Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM., Plant Cell 9(4), 1997
PMID: 9144958
Integration of spatial and temporal information during floral induction in Arabidopsis.
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D., Science 309(5737), 2005
PMID: 16099980
Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days.
Wilson RN, Heckman JW, Somerville CR., Plant Physiol. 100(1), 1992
PMID: 16652976
The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks.
Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G., J. Exp. Bot. 64(14), 2013
PMID: 24078668
Just say no: floral repressors help Arabidopsis bide the time.
Yant L, Mathieu J, Schmid M., Curr. Opin. Plant Biol. 12(5), 2009
PMID: 19695946
A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9.
Zeilinger MN, Farre EM, Taylor SR, Kay SA, Doyle FJ 3rd., Mol. Syst. Biol. 2(), 2006
PMID: 17102803

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25129129
PubMed | Europe PMC

Suchen in

Google Scholar