Strongly Incremental Repair Detection
Hough J, Purver M (2014)
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: ACL: 78-89.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Autor*in
Hough, JulianUniBi;
Purver, Matthew
Einrichtung
Abstract / Bemerkung
We present STIR (STrongly Incremental Repair detection), a system that detects speech repairs and edit terms on transcripts incrementally with minimal latency. STIR uses information-theoretic measures from n-gram models as its principal decision features in a pipeline of classifiers detecting the different stages of repairs. Results on the Switchboard disfluency tagged corpus show utterance-final accuracy on a par with state-of-the-art incremental repair detection methods, but with better incremental accuracy, faster time-to-detection and less computational overhead. We evaluate its performance using incremental metrics and propose new repair processing evaluation standards.
Erscheinungsjahr
2014
Titel des Konferenzbandes
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Seite(n)
78-89
Konferenz
EMNLP
Konferenzort
Doha, Qatar
Konferenzdatum
2014-10-26 – 2014-10-28
Page URI
https://pub.uni-bielefeld.de/record/2700436
Zitieren
Hough J, Purver M. Strongly Incremental Repair Detection. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: ACL; 2014: 78-89.
Hough, J., & Purver, M. (2014). Strongly Incremental Repair Detection. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 78-89. Doha, Qatar: ACL.
Hough, Julian, and Purver, Matthew. 2014. “Strongly Incremental Repair Detection”. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 78-89. Doha, Qatar: ACL.
Hough, J., and Purver, M. (2014). “Strongly Incremental Repair Detection” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (Doha, Qatar: ACL), 78-89.
Hough, J., & Purver, M., 2014. Strongly Incremental Repair Detection. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: ACL, pp. 78-89.
J. Hough and M. Purver, “Strongly Incremental Repair Detection”, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar: ACL, 2014, pp.78-89.
Hough, J., Purver, M.: Strongly Incremental Repair Detection. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). p. 78-89. ACL, Doha, Qatar (2014).
Hough, Julian, and Purver, Matthew. “Strongly Incremental Repair Detection”. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: ACL, 2014. 78-89.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:27Z
MD5 Prüfsumme
1f86eef0c76ab89336a75c24b56a2bf4