Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification"

Hermann T, Baier G, Stephani U, Ritter H (2008)
Bielefeld University.

Datenpublikation
 
Download
OA
OA Sonification Example S2
OA Sonification Example S3.1
Alle
Creator
Hermann, ThomasUniBi ; Baier, Gerold; Stephani, Ulrich; Ritter, HelgeUniBi
Abstract / Bemerkung
This paper introduces kernel regression mapping sonification (KRMS) for optimized mappings between data features and the parameter space of Parameter Mapping Sonification. Kernel regression allows to map data spaces to high-dimensional parameter spaces such that specific locations in data space with pre-determined extent are represented by selected acoustic parameter vectors. Thereby, specifically chosen correlated settings of parameters may be selected to create perceptual fingerprints, such as a particular timbre or vowel. With KRMS, the perceptual fingerprints become clearly audible and separable. Furthermore, kernel regression defines meaningful interpolations for any point in between. We present and discuss the basic approach exemplified by our previously introduced vocal EEG sonification, report new sonifications and generalize the approach towards automatic parameter mapping generators using unsupervised learning approaches. ### Sonification examples - Sonification Example [S1 (mp3, 356k)](https://pub.uni-bielefeld.de/download/2698580/2698583): formant transitions during absence EEG using a mapping of dipole x/y to the first two formants of a subtractive synthesizer. - Sonification Example [S2 (mp3, 248k)](https://pub.uni-bielefeld.de/download/2698580/2698584): formant transitions during absence EEG using a mapping of delay-embedding feature described in the paper to the first two formants. - Sonification Example Series 3: In the series from S3.1 to S3.5, it can be heard that the transitions between formants become successively sharper with decreasing bandwidth sigma: + [S3.1 (mp3, 248k)](https://pub.uni-bielefeld.de/download/2698580/2698585): sigma = 0.50 + [S3.2 (mp3, 248k)](https://pub.uni-bielefeld.de/download/2698580/2698586): sigma = 0.35 + [S3.3 (mp3, 248k)](https://pub.uni-bielefeld.de/download/2698580/2698588): sigma = 0.25 + [S3.4 (mp3, 248k)](https://pub.uni-bielefeld.de/download/2698580/2698587): sigma = 0.15 + [S3.5 (mp3, 248k)](https://pub.uni-bielefeld.de/download/2698580/2698589): sigma = 0.05 - Sonification Example [S4 (mp3, 496k)](https://pub.uni-bielefeld.de/download/2698580/2698590): same as S2, here rendered at 1/4 of real-time for better discernability of formant transitions. - Sonification Example Series 5: In the series from S5.1 to S5.5 is exactly as in S3.1-S3.5 a series with decreasing bandwidth sigma, here rendered at 1/4 of real-time for better discernability of formant transitions + [S5.1 (mp3, 496k)](https://pub.uni-bielefeld.de/download/2698580/2698591): sigma = 0.50 + [S5.2 (mp3, 496k)](https://pub.uni-bielefeld.de/download/2698580/2698593): sigma = 0.35 + [S5.3 (mp3, 496k)](https://pub.uni-bielefeld.de/download/2698580/2698592): sigma = 0.25 + [S5.4 (mp3, 496k)](https://pub.uni-bielefeld.de/download/2698580/2698594): sigma = 0.15 + [S5.5 (mp3, 496k)](https://pub.uni-bielefeld.de/download/2698580/2698595): sigma = 0.05
Erscheinungsjahr
2008
Copyright und Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2698580

Zitieren

Hermann T, Baier G, Stephani U, Ritter H. Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification". Bielefeld University; 2008.
Hermann, T., Baier, G., Stephani, U., & Ritter, H. (2008). Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification". Bielefeld University. doi:10.4119/unibi/2698580
Hermann, Thomas, Baier, Gerold, Stephani, Ulrich, and Ritter, Helge. 2008. Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification". Bielefeld University.
Hermann, T., Baier, G., Stephani, U., and Ritter, H. (2008). Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification". Bielefeld University.
Hermann, T., et al., 2008. Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification", Bielefeld University.
T. Hermann, et al., Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification", Bielefeld University, 2008.
Hermann, T., Baier, G., Stephani, U., Ritter, H.: Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification". Bielefeld University (2008).
Hermann, Thomas, Baier, Gerold, Stephani, Ulrich, and Ritter, Helge. Supplementary Material for "Kernel Regression Mapping for Vocal EEG Sonification". Bielefeld University, 2008.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Titel
Sonification Example S1
Beschreibung
Formant transitions during absence EEG using a mapping of dipole x/y to the first two formants of a subtractive synthesizer.
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
4775244a3e941d5f2d30423da430342a
Titel
Sonification Example S2
Beschreibung
Formant transitions during absence EEG using a mapping of delay-embedding feature described in the paper to the first two formants.
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
c518ced8f58576effd6817984fd60c5c
Titel
Sonification Example S3.1
Beschreibung
It can be heard that the transitions between formants become successively sharper with decreasing bandwidth (sigma = 0.50).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
710b8742cd5041ee7efcbf13a3584fc1
Titel
Sonification Example S3.2
Beschreibung
It can be heard that the transitions between formants become successively sharper with decreasing bandwidth (sigma = 0.35).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
8c544e91bf5d65b8b2f13812865284d6
Titel
Sonification Example S3.3
Beschreibung
It can be heard that the transitions between formants become successively sharper with decreasing bandwidth (sigma = 0.25).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
1050d08befc3daa26ba436b6386d0163
Titel
Sonification Example S3.4
Beschreibung
It can be heard that the transitions between formants become successively sharper with decreasing bandwidth (sigma = 0.15).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
534059b4790e04f5724e8a0890b32c88
Titel
Sonification Example S3.5
Beschreibung
It can be heard that the transitions between formants become successively sharper with decreasing bandwidth (sigma = 0.05).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
efda4a095255400a89ec19483598c04e
Titel
Sonification Example S4
Beschreibung
Same as S2, here rendered at 1/4 of real-time for better discernability of formant transitions.
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
4e43dc313a05d83b2dc6cac13f3de6e6
Titel
Sonification Example S5.1
Beschreibung
Rendered at 1/4 of real-time for better discernability of formant transitions (sigma = 0.50).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
3c52a1df7a16200227e60709a794865a
Titel
Sonification Example S5.2
Beschreibung
Rendered at 1/4 of real-time for better discernability of formant transitions (sigma = 0.35).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
ddfabd176db3a9235ad39aca4f70265d
Titel
Sonification Example S5.3
Beschreibung
Rendered at 1/4 of real-time for better discernability of formant transitions (sigma = 0.25).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
b69896c98ef6972696154538dbe5c9a8
Titel
Sonification Example S5.4
Beschreibung
Rendered at 1/4 of real-time for better discernability of formant transitions (sigma = 0.15).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
456211c6bc259e625966704eaa83abe6
Titel
Sonification Example S5.5
Beschreibung
Rendered at 1/4 of real-time for better discernability of formant transitions (sigma = 0.05).
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-12T10:00:28Z
MD5 Prüfsumme
7f655df600ba0cb421b98569e380e8a4


Material in PUB:
In sonstiger Relation
Kernel Regression Mapping for Vocal EEG Sonification
Hermann T, Baier G, Stephani U, Ritter H (2008)
In: Proceedings of the International Conference on Auditory Display (ICAD 2008). Susini P, Warusfel O (Eds); Paris, France: IRCAM.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar