Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets

Kress D, Egelhaaf M (2014)
Frontiers in Behavioral Neuroscience 8: 307.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed.
fixation; walking; goal-directed; head movements; spatial vision; blowfly
Frontiers in Behavioral Neuroscience
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Kress D, Egelhaaf M. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience. 2014;8:307.
Kress, D., & Egelhaaf, M. (2014). Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience, 8, 307. doi:10.3389/fnbeh.2014.00307
Kress, Daniel, and Egelhaaf, Martin. 2014. “Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets”. Frontiers in Behavioral Neuroscience 8: 307.
Kress, D., and Egelhaaf, M. (2014). Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience 8, 307.
Kress, D., & Egelhaaf, M., 2014. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience, 8, p 307.
D. Kress and M. Egelhaaf, “Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets”, Frontiers in Behavioral Neuroscience, vol. 8, 2014, pp. 307.
Kress, D., Egelhaaf, M.: Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience. 8, 307 (2014).
Kress, Daniel, and Egelhaaf, Martin. “Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets”. Frontiers in Behavioral Neuroscience 8 (2014): 307.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Saccadic movement strategy in a semiaquatic species - the harbour seal (Phoca vitulina).
Geurten BRH, Niesterok B, Dehnhardt G, Hanke FD., J Exp Biol 220(pt 8), 2017
PMID: 28167803
Saccadic body turns in walking Drosophila.
Geurten BR, Jähde P, Corthals K, Göpfert MC., Front Behav Neurosci 8(), 2014
PMID: 25386124

84 References

Daten bereitgestellt von Europe PubMed Central.

Figure tracking by flies is supported by parallel visual streams.
Aptekar JW, Shoemaker PA, Frye MA., Curr. Biol. 22(6), 2012
PMID: 22386313
Object tracking in motion-blind flies.
Bahl A, Ammer G, Schilling T, Borst A., Nat. Neurosci. 16(6), 2013
PMID: 23624513
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert H., Dvorak D.., 1983
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly II. Figure-detection cells, a new class of visual interneurones
Egelhaaf M.., 1985
Dynamic properties of two control systems underlying visually guided turning in house-flies
Egelhaaf M.., 1987
The neural computation of visual motion information
Egelhaaf M.., 2006
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Input organization of multifunctional motion-sensitive neurons in the blowfly.
Farrow K, Haag J, Borst A., J. Neurosci. 23(30), 2003
PMID: 14586008
Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses.
Fox JL, Aptekar JW, Zolotova NM, Shoemaker PA, Frye MA., J. Exp. Biol. 217(Pt 4), 2013
PMID: 24198267
Pupil and pseudopupil in the compound eye of Drosophila
Franceschini N.., 1972
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276

Gibson J.., 1950
The optomotor equilibrium of the Drosophila navigation system
Götz K.., 1975
Visual control of locomotion in the walking fruitfly Drosophila
Götz K., Wenking H.., 1973
Central gating of fly optomotor response.
Haag J, Wertz A, Borst A., Proc. Natl. Acad. Sci. U.S.A. 107(46), 2010
PMID: 21045125
Electrophysiological analysis of fly retina. I: comparative properties of R1–6 and R 7 and 8
Hardie R.., 1979
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals
Hausen K.., 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
Reafferent control of optomotor yaw torque in Drosophila melanogaster
Heisenberg M., Wolf R.., 1988
Roll-stabilization during flight of the blowfly’s head and body by mechanical and visual cues
Hengstenberg R.., 1984
Multisensory control in insect oculomotor systems.
Hengstenberg R., Rev Oculomot Res 5(), 1993
PMID: 8420553
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Das Reafferenzprinzip
Holst E., Mittelstaedt H.., 1950
Gravity reception in the walking fly, Calliphora erythrocephala: tonic modulatory influences of leg afferents on the head position
Horn E.., 1982
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol. 6(7), 2008
PMID: 18651791
Nonlinear integration of visual and haltere inputs in fly neck motor neurons.
Huston SJ, Krapp HG., J. Neurosci. 29(42), 2009
PMID: 19846697
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Object fixation by the blowfly during tethered flight in a simulated three-dimensional environment.
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Head movements of flies during visually guided flight
Land M.., 1973
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
Nutritional state modulates the neural processing of visual motion.
Longden KD, Muzzu T, Cook DJ, Schultz SR, Krapp HG., Curr. Biol. 24(8), 2014
PMID: 24684935
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
A directional tuning map of Drosophila elementary motion detectors.
Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A., Nature 500(7461), 2013
PMID: 23925246
Visuo-motor pathways in arthropods
Milde J., Strausfeld N.., 1986
The halteres of the blowfly Calliphora
Nalbach G., Hengstenberg R.., 1984
Musterinduzierte Flugorientierung
Reichardt W.., 1973
Visual control of orientation behaviour in the fly. Part I. A quantitative analysis.
Reichardt W, Poggio T., Q. Rev. Biophys. 9(3), 1976
PMID: 790441
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
Head movements in flies (Calliphora) produced by deflexion of the halteres
Sandeman D.., 1980
Angular acceleration, compensatory head movements and the halteres of flies (Lucilia serricata)
Sandeman D.., 1980
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Cellular mechanisms for integral feedback in visually guided behavior.
Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH., Proc. Natl. Acad. Sci. U.S.A. 111(15), 2014
PMID: 24706794
Interplay between feedback and feedforward control in fly gaze stabilization
Schwyn D., Heras F., Bolliger G., Parsons M., Krapp H., Tanaka R.., 2011
A visually-evoked roll response in the housefly
Srinivasan M.., 1977
Convergence of visual, haltere and prosternal inputs at neck motor neurons of Calliphora erythmocephala
Strausfeld N., Seyan H.., 1985
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila.
Suver MP, Mamiya A, Dickinson MH., Curr. Biol. 22(24), 2012
PMID: 23142045
A visual motion detection circuit suggested by Drosophila connectomics.
Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang LA, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB., Nature 500(7461), 2013
PMID: 23925240
Sensory systems and flight stability: what do insects measure and why?
Taylor GK, Krapp HG., Advances in insect physiology. 34(), 2008
PMID: IND44011217
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Detection and tracking of moving objects by the fly Musca domestica
Virsik R., Reichardt W.., 1976
How is tracking and fixation accomplished in the nervous system of the fly?
Wehrhahn C., Hausen K.., 1980
Integration of binocular optic flow in cervical neck motor neurons of the fly.
Wertz A, Haag J, Borst A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 198(9), 2012
PMID: 22674287

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 25309362
PubMed | Europe PMC

Suchen in

Google Scholar