Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets
Kress D, Egelhaaf M (2014)
Frontiers in Behavioral Neuroscience 8: 307.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Einrichtung
Abstract / Bemerkung
During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed.
Stichworte
fixation;
walking;
goal-directed;
head movements;
spatial vision;
blowfly
Erscheinungsjahr
2014
Zeitschriftentitel
Frontiers in Behavioral Neuroscience
Band
8
Seite(n)
307
ISSN
1662-5153
eISSN
1662-5153
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2698111
Zitieren
Kress D, Egelhaaf M. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience. 2014;8:307.
Kress, D., & Egelhaaf, M. (2014). Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience, 8, 307. doi:10.3389/fnbeh.2014.00307
Kress, Daniel, and Egelhaaf, Martin. 2014. “Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets”. Frontiers in Behavioral Neuroscience 8: 307.
Kress, D., and Egelhaaf, M. (2014). Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience 8, 307.
Kress, D., & Egelhaaf, M., 2014. Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience, 8, p 307.
D. Kress and M. Egelhaaf, “Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets”, Frontiers in Behavioral Neuroscience, vol. 8, 2014, pp. 307.
Kress, D., Egelhaaf, M.: Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets. Frontiers in Behavioral Neuroscience. 8, 307 (2014).
Kress, Daniel, and Egelhaaf, Martin. “Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets”. Frontiers in Behavioral Neuroscience 8 (2014): 307.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:27Z
MD5 Prüfsumme
60d677d8d522918cf52f550f98250721
Daten bereitgestellt von European Bioinformatics Institute (EBI)
2 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Saccadic movement strategy in a semiaquatic species - the harbour seal (Phoca vitulina).
Geurten BRH, Niesterok B, Dehnhardt G, Hanke FD., J Exp Biol 220(pt 8), 2017
PMID: 28167803
Geurten BRH, Niesterok B, Dehnhardt G, Hanke FD., J Exp Biol 220(pt 8), 2017
PMID: 28167803
Saccadic body turns in walking Drosophila.
Geurten BR, Jähde P, Corthals K, Göpfert MC., Front Behav Neurosci 8(), 2014
PMID: 25386124
Geurten BR, Jähde P, Corthals K, Göpfert MC., Front Behav Neurosci 8(), 2014
PMID: 25386124
84 References
Daten bereitgestellt von Europe PubMed Central.
Figure tracking by flies is supported by parallel visual streams.
Aptekar JW, Shoemaker PA, Frye MA., Curr. Biol. 22(6), 2012
PMID: 22386313
Aptekar JW, Shoemaker PA, Frye MA., Curr. Biol. 22(6), 2012
PMID: 22386313
Object tracking in motion-blind flies.
Bahl A, Ammer G, Schilling T, Borst A., Nat. Neurosci. 16(6), 2013
PMID: 23624513
Bahl A, Ammer G, Schilling T, Borst A., Nat. Neurosci. 16(6), 2013
PMID: 23624513
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Prototypical components of honeybee homing flight behavior depend on the visual appearance of objects surrounding the goal.
Braun E, Dittmar L, Boeddeker N, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 22279431
Braun E, Dittmar L, Boeddeker N, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 22279431
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons.
Durr V, Egelhaaf M., J. Neurophysiol. 82(6), 1999
PMID: 10601464
Durr V, Egelhaaf M., J. Neurophysiol. 82(6), 1999
PMID: 10601464
The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert H., Dvorak D.., 1983
Eckert H., Dvorak D.., 1983
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly II. Figure-detection cells, a new class of visual interneurones
Egelhaaf M.., 1985
Egelhaaf M.., 1985
Dynamic properties of two control systems underlying visually guided turning in house-flies
Egelhaaf M.., 1987
Egelhaaf M.., 1987
The neural computation of visual motion information
Egelhaaf M.., 2006
Egelhaaf M.., 2006
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques.
Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A., J. Neurophysiol. 69(2), 1993
PMID: 8459271
Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A., J. Neurophysiol. 69(2), 1993
PMID: 8459271
Input organization of multifunctional motion-sensitive neurons in the blowfly.
Farrow K, Haag J, Borst A., J. Neurosci. 23(30), 2003
PMID: 14586008
Farrow K, Haag J, Borst A., J. Neurosci. 23(30), 2003
PMID: 14586008
Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses.
Fox JL, Aptekar JW, Zolotova NM, Shoemaker PA, Frye MA., J. Exp. Biol. 217(Pt 4), 2013
PMID: 24198267
Fox JL, Aptekar JW, Zolotova NM, Shoemaker PA, Frye MA., J. Exp. Biol. 217(Pt 4), 2013
PMID: 24198267
Figure-ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior.
Fox JL, Frye MA., J. Exp. Biol. 217(Pt 4), 2013
PMID: 24198264
Fox JL, Frye MA., J. Exp. Biol. 217(Pt 4), 2013
PMID: 24198264
Pupil and pseudopupil in the compound eye of Drosophila
Franceschini N.., 1972
Franceschini N.., 1972
Wide-field, motion-sensitive neurons and matched filters for optic flow fields.
Franz MO, Krapp HG., Biol Cybern 83(3), 2000
PMID: 11007295
Franz MO, Krapp HG., Biol Cybern 83(3), 2000
PMID: 11007295
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron.
Geurten BR, Kern R, Egelhaaf M., Front Integr Neurosci 6(), 2012
PMID: 22485089
Geurten BR, Kern R, Egelhaaf M., Front Integr Neurosci 6(), 2012
PMID: 22485089
Gibson J.., 1950
The optomotor equilibrium of the Drosophila navigation system
Götz K.., 1975
Götz K.., 1975
Visual control of locomotion in the walking fruitfly Drosophila
Götz K., Wenking H.., 1973
Götz K., Wenking H.., 1973
Central gating of fly optomotor response.
Haag J, Wertz A, Borst A., Proc. Natl. Acad. Sci. U.S.A. 107(46), 2010
PMID: 21045125
Haag J, Wertz A, Borst A., Proc. Natl. Acad. Sci. U.S.A. 107(46), 2010
PMID: 21045125
Electrophysiological analysis of fly retina. I: comparative properties of R1–6 and R 7 and 8
Hardie R.., 1979
Hardie R.., 1979
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals
Hausen K.., 1982
Hausen K.., 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
Hausen K.., 1982
Reafferent control of optomotor yaw torque in Drosophila melanogaster
Heisenberg M., Wolf R.., 1988
Heisenberg M., Wolf R.., 1988
Roll-stabilization during flight of the blowfly’s head and body by mechanical and visual cues
Hengstenberg R.., 1984
Hengstenberg R.., 1984
Multisensory control in insect oculomotor systems.
Hengstenberg R., Rev Oculomot Res 5(), 1993
PMID: 8420553
Hengstenberg R., Rev Oculomot Res 5(), 1993
PMID: 8420553
Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing.
Hennig P, Egelhaaf M., Front Neural Circuits 6(), 2012
PMID: 22461769
Hennig P, Egelhaaf M., Front Neural Circuits 6(), 2012
PMID: 22461769
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Das Reafferenzprinzip
Holst E., Mittelstaedt H.., 1950
Holst E., Mittelstaedt H.., 1950
Gravity reception in the walking fly, Calliphora erythrocephala: tonic modulatory influences of leg afferents on the head position
Horn E.., 1982
Horn E.., 1982
Body movements and retinal pattern displacements while approaching a stationary object in the walking fly, Calliphora erythrocephala.
Horn E, Mittag J., Biol Cybern 39(1), 1980
PMID: 7459402
Horn E, Mittag J., Biol Cybern 39(1), 1980
PMID: 7459402
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol. 6(7), 2008
PMID: 18651791
Huston SJ, Krapp HG., PLoS Biol. 6(7), 2008
PMID: 18651791
Nonlinear integration of visual and haltere inputs in fly neck motor neurons.
Huston SJ, Krapp HG., J. Neurosci. 29(42), 2009
PMID: 19846697
Huston SJ, Krapp HG., J. Neurosci. 29(42), 2009
PMID: 19846697
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Object fixation by the blowfly during tethered flight in a simulated three-dimensional environment.
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Head and body stabilization in blowflies walking on differently structured substrates.
Kress D, Egelhaaf M., J. Exp. Biol. 215(Pt 9), 2012
PMID: 22496289
Kress D, Egelhaaf M., J. Exp. Biol. 215(Pt 9), 2012
PMID: 22496289
Gaze characteristics of freely walking blowflies Calliphora vicina in a goal-directed task.
Kress D, Egelhaaf M., J. Exp. Biol. 217(Pt 18), 2014
PMID: 25013104
Kress D, Egelhaaf M., J. Exp. Biol. 217(Pt 18), 2014
PMID: 25013104
Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo.
Kurtz R, Durr V, Egelhaaf M., J. Neurophysiol. 84(4), 2000
PMID: 11024084
Kurtz R, Durr V, Egelhaaf M., J. Neurophysiol. 84(4), 2000
PMID: 11024084
Head movements of flies during visually guided flight
Land M.., 1973
Land M.., 1973
Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly.
Liang P, Heitwerth J, Kern R, Kurtz R, Egelhaaf M., J. Neurophysiol. 107(12), 2012
PMID: 22423002
Liang P, Heitwerth J, Kern R, Kurtz R, Egelhaaf M., J. Neurophysiol. 107(12), 2012
PMID: 22423002
Motion adaptation enhances object-induced neural activity in three-dimensional virtual environment.
Liang P, Kern R, Egelhaaf M., J. Neurosci. 28(44), 2008
PMID: 18971474
Liang P, Kern R, Egelhaaf M., J. Neurosci. 28(44), 2008
PMID: 18971474
Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow.
Liang P, Kern R, Kurtz R, Egelhaaf M., J. Neurophysiol. 105(4), 2011
PMID: 21307322
Liang P, Kern R, Kurtz R, Egelhaaf M., J. Neurophysiol. 105(4), 2011
PMID: 21307322
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
Nutritional state modulates the neural processing of visual motion.
Longden KD, Muzzu T, Cook DJ, Schultz SR, Krapp HG., Curr. Biol. 24(8), 2014
PMID: 24684935
Longden KD, Muzzu T, Cook DJ, Schultz SR, Krapp HG., Curr. Biol. 24(8), 2014
PMID: 24684935
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
A directional tuning map of Drosophila elementary motion detectors.
Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A., Nature 500(7461), 2013
PMID: 23925246
Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A., Nature 500(7461), 2013
PMID: 23925246
Visuo-motor pathways in arthropods
Milde J., Strausfeld N.., 1986
Milde J., Strausfeld N.., 1986
The halteres of the blowfly Calliphora
Nalbach G., Hengstenberg R.., 1984
Nalbach G., Hengstenberg R.., 1984
Musterinduzierte Flugorientierung
Reichardt W.., 1973
Reichardt W.., 1973
Visual control of orientation behaviour in the fly. Part I. A quantitative analysis.
Reichardt W, Poggio T., Q. Rev. Biophys. 9(3), 1976
PMID: 790441
Reichardt W, Poggio T., Q. Rev. Biophys. 9(3), 1976
PMID: 790441
Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons.
Rien D, Kern R, Kurtz R., Eur. J. Neurosci. 36(8), 2012
PMID: 22775326
Rien D, Kern R, Kurtz R., Eur. J. Neurosci. 36(8), 2012
PMID: 22775326
Octopaminergic modulation of a fly visual motion-sensitive neuron during stimulation with naturalistic optic flow.
Rien D, Kern R, Kurtz R., Front Behav Neurosci 7(), 2013
PMID: 24194704
Rien D, Kern R, Kurtz R., Front Behav Neurosci 7(), 2013
PMID: 24194704
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
Head movements in flies (Calliphora) produced by deflexion of the halteres
Sandeman D.., 1980
Sandeman D.., 1980
Angular acceleration, compensatory head movements and the halteres of flies (Lucilia serricata)
Sandeman D.., 1980
Sandeman D.., 1980
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Cellular mechanisms for integral feedback in visually guided behavior.
Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH., Proc. Natl. Acad. Sci. U.S.A. 111(15), 2014
PMID: 24706794
Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH., Proc. Natl. Acad. Sci. U.S.A. 111(15), 2014
PMID: 24706794
Interplay between feedback and feedforward control in fly gaze stabilization
Schwyn D., Heras F., Bolliger G., Parsons M., Krapp H., Tanaka R.., 2011
Schwyn D., Heras F., Bolliger G., Parsons M., Krapp H., Tanaka R.., 2011
A visually-evoked roll response in the housefly
Srinivasan M.., 1977
Srinivasan M.., 1977
Convergence of visual, haltere and prosternal inputs at neck motor neurons of Calliphora erythmocephala
Strausfeld N., Seyan H.., 1985
Strausfeld N., Seyan H.., 1985
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila.
Suver MP, Mamiya A, Dickinson MH., Curr. Biol. 22(24), 2012
PMID: 23142045
Suver MP, Mamiya A, Dickinson MH., Curr. Biol. 22(24), 2012
PMID: 23142045
A visual motion detection circuit suggested by Drosophila connectomics.
Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang LA, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB., Nature 500(7461), 2013
PMID: 23925240
Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang LA, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB., Nature 500(7461), 2013
PMID: 23925240
Sensory systems and flight stability: what do insects measure and why?
Taylor GK, Krapp HG., Advances in insect physiology. 34(), 2008
PMID: IND44011217
Taylor GK, Krapp HG., Advances in insect physiology. 34(), 2008
PMID: IND44011217
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Detection and tracking of moving objects by the fly Musca domestica
Virsik R., Reichardt W.., 1976
Virsik R., Reichardt W.., 1976
Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions.
Warzecha A, Egelhaaf M., Vision Res. 40(21), 2000
PMID: 11000395
Warzecha A, Egelhaaf M., Vision Res. 40(21), 2000
PMID: 11000395
Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques.
Warzecha AK, Egelhaaf M, Borst A., J. Neurophysiol. 69(2), 1993
PMID: 8459270
Warzecha AK, Egelhaaf M, Borst A., J. Neurophysiol. 69(2), 1993
PMID: 8459270
How is tracking and fixation accomplished in the nervous system of the fly?
Wehrhahn C., Hausen K.., 1980
Wehrhahn C., Hausen K.., 1980
Integration of binocular optic flow in cervical neck motor neurons of the fly.
Wertz A, Haag J, Borst A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 198(9), 2012
PMID: 22674287
Wertz A, Haag J, Borst A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 198(9), 2012
PMID: 22674287
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 25309362
PubMed | Europe PMC
Suchen in