Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths

Werblow A, Klimpel S, Bolius S, Dorresteijn AWC, Sauer J, Melaun C (2014)
PLoS ONE 9(7).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
Nowadays a number of endemic mosquito species are known to possess vector abilities for various diseases, as e. g. the sibling species Culex pipiens and Culex torrentium. Due to their morphological similarity, ecology, distribution and vector abilities, knowledge about these species' population structure is essential. Culicidae from 25 different sampling sites were collected from March till October 2012. All analyses were performed with aligned cox1 sequences with a total length of 658 bp. Population structure as well as distribution patterns of both species were analysed using molecular methods and different statistical tests like distance based redundancy analysis (dbDRA), analysis of molecular variances (AMOVA) or McDonald & Kreitman test and Tajima's D. Within both species, we could show a genetic variability among the cox1 fragment. The construction of haplotype networks revealed one dominating haplotype for Cx. pipiens, widely distributed within Germany and a more homogeneous pattern for Cx. torrentium. The low genetic differences within Cx. pipiens could be a result of an infection with Wolbachia which can induce a sweep through populations by passively taking the also maternally inherited mtDNA through the population, thereby reducing the mitochondrial diversity as an outcome of reproductive incompatibility. Pairwise population genetic differentiation (F-ST) ranged significantly from moderate to very great between populations of Cx. pipiens and Cx. torrentium. Analyses of molecular variances revealed for both species that the main genetic variability exists within the populations (Cx. pipiens [88.38%]; Cx. torrentium [66.54%]). Based on a distance based redundancy analysis geographical origin explained a small but significant part of the species' genetic variation. Overall, the results confirm that Cx. pipiens and Cx. torrentium underlie different factors regarding their mitochondrial differentiation, which could be a result of endosymbiosis, dispersal between nearly located populations or human introduction.
Erscheinungsjahr
Zeitschriftentitel
PLoS ONE
Band
9
Ausgabe
7
ISSN
eISSN
PUB-ID

Zitieren

Werblow A, Klimpel S, Bolius S, Dorresteijn AWC, Sauer J, Melaun C. Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths. PLoS ONE. 2014;9(7).
Werblow, A., Klimpel, S., Bolius, S., Dorresteijn, A. W. C., Sauer, J., & Melaun, C. (2014). Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths. PLoS ONE, 9(7). doi:10.1371/journal.pone.0102158
Werblow, A., Klimpel, S., Bolius, S., Dorresteijn, A. W. C., Sauer, J., and Melaun, C. (2014). Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths. PLoS ONE 9.
Werblow, A., et al., 2014. Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths. PLoS ONE, 9(7).
A. Werblow, et al., “Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths”, PLoS ONE, vol. 9, 2014.
Werblow, A., Klimpel, S., Bolius, S., Dorresteijn, A.W.C., Sauer, J., Melaun, C.: Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths. PLoS ONE. 9, (2014).
Werblow, Antje, Klimpel, Sven, Bolius, Sarah, Dorresteijn, Adriaan W. C., Sauer, Jan, and Melaun, Christian. “Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths”. PLoS ONE 9.7 (2014).

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Culex torrentium mosquitoes from Germany are negative for Wolbachia.
Leggewie M, Krumkamp R, Badusche M, Heitmann A, Jansen S, Schmidt-Chanasit J, Tannich E, Becker SC., Med Vet Entomol 32(1), 2018
PMID: 28906572
Bacterial diversity of cosmopolitan Culex pipiens and invasive Aedes japonicus from Germany.
Zotzmann S, Steinbrink A, Schleich K, Frantzmann F, Xoumpholphakdy C, Spaeth M, Moro CV, Mavingui P, Klimpel S., Parasitol Res 116(7), 2017
PMID: 28534105
Ecological Distribution and CQ11 Genetic Structure of Culex pipiens Complex (Diptera: Culicidae) in Italy.
Di Luca M, Toma L, Boccolini D, Severini F, La Rosa G, Minelli G, Bongiorno G, Montarsi F, Arnoldi D, Capelli G, Rizzoli A, Romi R., PLoS One 11(1), 2016
PMID: 26741494
High genetic diversity in the Culex pipiens complex from a West Nile Virus epidemic area in Southern Europe.
Simonato M, Martinez-Sañudo I, Cavaletto G, Santoiemma G, Saltarin A, Mazzon L., Parasit Vectors 9(), 2016
PMID: 26979749
Physico-Chemical Characteristics of Culex pipiens sensu lato and Culex torrentium (Diptera: Culicidae) Breeding Sites in Germany.
Lühken R, Steinke S, Leggewie M, Tannich E, Krüger A, Becker S, Kiel E., J Med Entomol 52(5), 2015
PMID: 26336210

88 References

Daten bereitgestellt von Europe PubMed Central.

Pathogenesis of lymphatic disease in Bancroftian Filariasis: A clinical perspective
AUTHOR UNKNOWN, 2000
Mosquito-borne diseases--a new threat to Europe?
Avsic-Zupanc T., Clin. Microbiol. Infect. 19(8), 2013
PMID: 23855921

AUTHOR UNKNOWN, 0
Vector-related risk mapping of the introduction and establishment of Aedes albopictus in Europe
AUTHOR UNKNOWN, 2008
A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options.
Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, Van Bortel W., Vector Borne Zoonotic Dis. 12(6), 2012
PMID: 22448724

AUTHOR UNKNOWN, 0
Prevalence of multiple anthelmintic resistant gastrointestinal nematodes in dairy goats in a desolated tract (Pakistan).
Jabbar A, Iqbal Z, Saddiqi HA, Babar W, Saeed M., Parasitol. Res. 103(1), 2008
PMID: 18301923
Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany.
Jost H, Bialonski A, Storch V, Gunther S, Becker N, Schmidt-Chanasit J., J. Clin. Microbiol. 48(5), 2010
PMID: 20335414
Isolation and phylogenetic analysis of Batai virus, Germany.
Jost H, Bialonski A, Schmetz C, Gunther S, Becker N, Schmidt-Chanasit J., Am. J. Trop. Med. Hyg. 84(2), 2011
PMID: 21292892
Isolation of usutu virus in Germany.
Jost H, Bialonski A, Maus D, Sambri V, Eiden M, Groschup MH, Gunther S, Becker N, Schmidt-Chanasit J., Am. J. Trop. Med. Hyg. 85(3), 2011
PMID: 21896821
Avian malaria infections in western European mosquitoes.
Ventim R, Ramos JA, Osorio H, Lopes RJ, Perez-Tris J, Mendes L., Parasitol. Res. 111(2), 2012
PMID: 22427023

AUTHOR UNKNOWN, 0
"Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology.
Farajollahi A, Fonseca DM, Kramer LD, Marm Kilpatrick A., Infect. Genet. Evol. 11(7), 2011
PMID: 21875691

AUTHOR UNKNOWN, 0
Genetic differentiation of populations within the Culex pipiens complex and phylogeny of related species.
Weitzel T, Collado A, Jost A, Pietsch K, Storch V, Becker N., J. Am. Mosq. Control Assoc. 25(1), 2009
PMID: 19432063
Distribution and frequency of Culex pipiens and Culex torrentium (Culicidae) in Europe and diagnostic allozyme markers
AUTHOR UNKNOWN, 2011
A study of the distribution of the Culex pipiens complex (Insecta: Diptera: Culicidae) mosquitoes in the European part of Russia by molecular methods of identification
AUTHOR UNKNOWN, 2007
Zur Ökologie und Biologie der Stechmücken des Gebietes Frankfurt am Main (Diptera, Culicidae)
AUTHOR UNKNOWN, 1960
On the breeding period of Culex pipiens and Culex torrentium (Diptera, Culicidae) in Uppsala, Sweden
AUTHOR UNKNOWN, 1995
Feeding patterns of mosquitoes (Diptera: Culicidae) in relation to the transmission of Ockelbo disease in Sweden
AUTHOR UNKNOWN, 1986
Swedish Culex torrentium and Cx. pipiens (Diptera: Culicidae) as experimental vectors of Ockelbo virus.
Lundstrom JO, Niklasson B, Francy DB., J. Med. Entomol. 27(4), 1990
PMID: 2167372
Geographic distribution and relative abundance of the sibling vector species Culex torrentium and Culex pipiens in Sweden.
Hesson JC, Ostman O, Schafer M, Lundstrom JO., Vector Borne Zoonotic Dis. 11(10), 2011
PMID: 21923273
An ideal worth fighting for.
AUTHOR UNKNOWN, Lancet 352(9121), 1998
PMID: 9800731

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Morphometric, physiological and molecular characteristics of underground populations of the urban mosquito Culex pipiens Linnaeus f. molestus Forskål (Diptera: Culicidae) from several areas of Russia
AUTHOR UNKNOWN, 2007

AUTHOR UNKNOWN, 0
Phylogeny of Anophelinae (Diptera: Culicidae) based on nuclear ribosomal and mitochondrial DNA sequences
AUTHOR UNKNOWN, 2002
Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology.
Reidenbach KR, Cook S, Bertone MA, Harbach RE, Wiegmann BM, Besansky NJ., BMC Evol. Biol. 9(), 2009
PMID: 20028549
Insight into Anopheles (Nyssorhynchus) (Diptera: Culicidae) species from Brazil.
Sallum MA, Marrelli MT, Nagaki SS, Laporta GZ, Dos Santos CL., J. Med. Entomol. 45(6), 2008
PMID: 19058619
A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera: Culicidae).
Bourke BP, Oliveira TP, Suesdek L, Bergo ES, Sallum MA., Parasit Vectors 6(), 2013
PMID: 23597081
Phylogenetic analysis and DNA-based species confirmation in Anopheles (Nyssorhynchus)
AUTHOR UNKNOWN, 2013
Biological identifications through DNA barcodes
AUTHOR UNKNOWN, 2003
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species
AUTHOR UNKNOWN, 2003
Molecular and cytogenetic evidence of three sibling species of the Anopheles barbirostris Form A (Diptera:Culicidae) in Thailand.
Saeung A, Baimai V, Otsuka Y, Rattanarithikul R, Somboon P, Junkum A, Tuetun B, Takaoka H, Choochote W., Parasitol. Res. 102(3), 2007
PMID: 18038149
DNA barcoding: error rates based on comprehensive sampling
AUTHOR UNKNOWN, 2005
Assigning sequences to species in the absence of large interspecific differences.
Lou M, Golding GB., Mol. Phylogenet. Evol. 56(1), 2010
PMID: 20067837
DNA barcoding of recently diverged species: relative performance of matching methods
AUTHOR UNKNOWN, 2012
Diversity of Culex torrentium Martini, 1925 - a potential vector of arboviruses and filaria in Europe.
Werblow A, Bolius S, Dorresteijn AW, Melaun C, Klimpel S., Parasitol. Res. 112(7), 2013
PMID: 23604567

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
An inexpensive, automation-friendly protocol for recovering high-quality DNA
IVANOVA NV, DEWAARD JR, HEBERT PDN., Mol. Ecol. Notes 6(4), 2006
PMID: IND43854690
DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates
AUTHOR UNKNOWN, 1994
TCS: a computer program to estimate gene genealogies.
Clement M, Posada D, Crandall KA., Mol. Ecol. 9(10), 2000
PMID: 11050560
MODELTEST: testing the model of DNA substitution.
Posada D, Crandall KA., Bioinformatics 14(9), 1998
PMID: 9918953
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Distance based redundancy analysis: testing multispecies responses in multifactorial ecological experiments
AUTHOR UNKNOWN, 1999
Fitting multivariate models to community data: a comment on distance-based redundancy analysis
AUTHOR UNKNOWN, 2001

AUTHOR UNKNOWN, 0
Distinguishing between selective sweeps and demography using DNA polymorphism data.
Jensen JD, Kim Y, DuMont VB, Aquadro CF, Bustamante CD., Genetics 170(3), 2005
PMID: 15911584
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows
AUTHOR UNKNOWN, 2010
Adaptive protein evolution at the Adh locus in Drosophila.
McDonald JH, Kreitman M., Nature 351(6328), 1991
PMID: 1904993
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.
Librado P, Rozas J., Bioinformatics 25(11), 2009
PMID: 19346325
Genetic consequences of range expansion
AUTHOR UNKNOWN, 2009
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
The estimation of population differentiation with microsatellite markers.
Balloux F, Lugon-Moulin N., Mol. Ecol. 11(2), 2002
PMID: 11856418
Mosquito-borne viruses in western Europe: a review.
Lundstrom JO., J. Vector Ecol. 24(1), 1999
PMID: 10436876

AUTHOR UNKNOWN, 0
PCR-RFLP of the COI gene reliably differentiates Cx. pipiens, Cx. pipiens f. molestus and Cx. torrentium of the pipiens complex
AUTHOR UNKNOWN, 2007

AUTHOR UNKNOWN, 0
Mitochondrial portraits of human populations using median networks.
Bandelt HJ, Forster P, Sykes BC, Richards MB., Genetics 141(2), 1995
PMID: 8647407
Dispersion studies of Culex pipiens fatigans tagged with 32P in the Kemmendine Area of Rangoon, Burma
AUTHOR UNKNOWN, 1967
A mark-release-recapture study on dispersal and flight distance of Culex pipiens pallens in an urban area of Japan.
Tsuda Y, Komagata O, Kasai S, Hayashi T, Nihei N, Saito K, Mizutani M, Kunida M, Yoshida M, Kobayashi M., J. Am. Mosq. Control Assoc. 24(3), 2008
PMID: 18939684
Mark-release-recapture studies with Culex mosquitoes (Diptera: Culicidae) in Southern California.
Reisen WK, Milby MM, Meyer RP, Pfuntner AR, Spoehel J, Hazelrigg JE, Webb JP Jr., J. Med. Entomol. 28(3), 1991
PMID: 1875362
Estimation of dispersal distances of Culex erraticus in a focus of eastern equine encephalitis virus in the southeastern United States.
Estep LK, Burkett-Cadena ND, Hill GE, Unnasch RS, Unnasch TR., J. Med. Entomol. 47(6), 2010
PMID: 21175044
Crossing experiments with Culex strains
AUTHOR UNKNOWN, 1951
Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus
AUTHOR UNKNOWN, 2009
Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila.
Boyle L, O'Neill SL, Robertson HM, Karr TL., Science 260(5115), 1993
PMID: 8511587
Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility.
Hoffmann AA, Clancy D, Duncan J., Heredity (Edinb) 76 ( Pt 1)(), 1996
PMID: 8575931
Cytoplasmic incompatibility in insects: Why sterilize females?
Rousset F, Raymond M., Trends Ecol. Evol. (Amst.) 6(2), 1991
PMID: 21232424
Wolbachia variability and host effects on crossing type in Culex mosquitoes.
Sinkins SP, Walker T, Lynd AR, Steven AR, Makepeace BL, Godfray HC, Parkhill J., Nature 436(7048), 2005
PMID: 16015330
The distribution of strains of endosymbiotic bacteria Wolbachia pipientis in natural populations of Culex pipiens mosquitoes (Diptera: Culicidae)
AUTHOR UNKNOWN, 2009
Commensalism, adaptation and gene flow: mosquitoes of the Culex pipiens complex in different habitats.
Chevillon C, Eritja R, Pasteur N, Raymond M., Genet. Res. 66(2), 1995
PMID: 8522156

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25048456
PubMed | Europe PMC

Suchen in

Google Scholar