All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications

Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A (2014)
Advanced Materials 26(28): 4831-+.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Woszczyna, Miroslaw; Winter, AndreasUniBi; Grothe, Miriam; Willunat, Annika; Wundrack, Stefan; Stosch, Rainer; Weimann, Thomas; Ahlers, Franz; Turchanin, AndreyUniBi
Abstract / Bemerkung
Non-destructive chemical functionalization of graphene for applications in electronic devices (e.g., sensors or transducers) is achieved via assembly of carbon nano-membrane (CNM)/single-layer graphene (SLG) van der Waals heterostructures. The CNMs are 1 nm-thick, dielectric molecular sheets terminated with functional amino groups. The structure and performance of heterostructured field-effect transistors (FETs) are characterized by photoelectron/Raman spectroscopy and by electric transport measurements in vacuum, ambient conditions, and water. [GRAPHICS] .
Erscheinungsjahr
2014
Zeitschriftentitel
Advanced Materials
Band
26
Ausgabe
28
Seite(n)
4831-+
ISSN
0935-9648
Page URI
https://pub.uni-bielefeld.de/record/2695017

Zitieren

Woszczyna M, Winter A, Grothe M, et al. All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials. 2014;26(28):4831-+.
Woszczyna, M., Winter, A., Grothe, M., Willunat, A., Wundrack, S., Stosch, R., Weimann, T., et al. (2014). All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials, 26(28), 4831-+. doi:10.1002/adma.201400948
Woszczyna, Miroslaw, Winter, Andreas, Grothe, Miriam, Willunat, Annika, Wundrack, Stefan, Stosch, Rainer, Weimann, Thomas, Ahlers, Franz, and Turchanin, Andrey. 2014. “All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications”. Advanced Materials 26 (28): 4831-+.
Woszczyna, M., Winter, A., Grothe, M., Willunat, A., Wundrack, S., Stosch, R., Weimann, T., Ahlers, F., and Turchanin, A. (2014). All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials 26, 4831-+.
Woszczyna, M., et al., 2014. All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials, 26(28), p 4831-+.
M. Woszczyna, et al., “All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications”, Advanced Materials, vol. 26, 2014, pp. 4831-+.
Woszczyna, M., Winter, A., Grothe, M., Willunat, A., Wundrack, S., Stosch, R., Weimann, T., Ahlers, F., Turchanin, A.: All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials. 26, 4831-+ (2014).
Woszczyna, Miroslaw, Winter, Andreas, Grothe, Miriam, Willunat, Annika, Wundrack, Stefan, Stosch, Rainer, Weimann, Thomas, Ahlers, Franz, and Turchanin, Andrey. “All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications”. Advanced Materials 26.28 (2014): 4831-+.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces.
Bueno R, Marciello M, Moreno M, Sánchez-Sánchez C, Martinez JI, Martinez L, Prats-Alfonso E, Guimerà-Brunet A, Garrido JA, Villa R, Mompean F, García-Hernandez M, Huttel Y, Del Puerto Morales M, Briones C, López MF, Ellis GJ, Vázquez L, Martín-Gago JA., ACS Omega 4(2), 2019
PMID: 31008418
Recent progress in van der Waals heterojunctions.
Xia W, Dai L, Yu P, Tong X, Song W, Zhang G, Wang Z., Nanoscale 9(13), 2017
PMID: 28317972
Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy.
Chamberlain TW, Biskupek J, Skowron ST, Markevich AV, Kurasch S, Reimer O, Walker KE, Rance GA, Feng X, Müllen K, Turchanin A, Lebedeva MA, Majouga AG, Nenajdenko VG, Kaiser U, Besley E, Khlobystov AN., ACS Nano 11(3), 2017
PMID: 28191929
Synthesis, structure and applications of graphene-based 2D heterostructures.
Solís-Fernández P, Bissett M, Ago H., Chem Soc Rev 46(15), 2017
PMID: 28691726
Electron beam controlled covalent attachment of small organic molecules to graphene.
Markevich A, Kurasch S, Lehtinen O, Reimer O, Feng X, Müllen K, Turchanin A, Khlobystov AN, Kaiser U, Besley E., Nanoscale 8(5), 2016
PMID: 26757842
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials.
Zheng Z, Zhang X, Neumann C, Emmrich D, Winter A, Vieker H, Liu W, Lensen M, Gölzhäuser A, Turchanin A., Nanoscale 7(32), 2015
PMID: 26203897

32 References

Daten bereitgestellt von Europe PubMed Central.

Fabrication, optimization, and use of graphene field effect sensors.
Stine R, Mulvaney SP, Robinson JT, Tamanaha CR, Sheehan PE., Anal. Chem. 85(2), 2012
PMID: 23234380
Graphene-based electrochemical sensors.
Wu S, He Q, Tan C, Wang Y, Zhang H., Small 9(8), 2013
PMID: 23494883

Kuila, Prog. Mater. Sci. 57(), 2012

Mao, Prog. Surf. Sci. 88(), 2013
The chemistry of graphene oxide.
Dreyer DR, Park S, Bielawski CW, Ruoff RS., Chem Soc Rev 39(1), 2009
PMID: 20023850
Polymer brushes on graphene.
Steenackers M, Gigler AM, Zhang N, Deubel F, Seifert M, Hess LH, Lim CH, Loh KP, Garrido JA, Jordan R, Stutzmann M, Sharp ID., J. Am. Chem. Soc. 133(27), 2011
PMID: 21639111
Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups.
Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, de Heer WA, Haddon RC., J. Am. Chem. Soc. 131(4), 2009
PMID: 19173656

Turchanin, Prog. Surf. Sci. 87(), 2012
A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.
Angelova P, Vieker H, Weber NE, Matei D, Reimer O, Meier I, Kurasch S, Biskupek J, Lorbach D, Wunderlich K, Chen L, Terfort A, Klapper M, Mullen K, Kaiser U, Golzhauser A, Turchanin A., ACS Nano 7(8), 2013
PMID: 23802686
Large-area synthesis of high-quality and uniform graphene films on copper foils.
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS., Science 324(5932), 2009
PMID: 19423775

Eck, Adv. Mater. 12(), 2000
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Golzhauser A., Small 5(23), 2009
PMID: 19787678
Janus nanomembranes: a generic platform for chemistry in two dimensions.
Zheng Z, Nottbohm CT, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M, Golzhauser A., Angew. Chem. Int. Ed. Engl. 49(45), 2010
PMID: 20886488
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375

Turchanin, Adv. Mater. 21(), 2009

Pirkle, Appl. Phys. Lett. 99(), 2011

Turchanin, Adv. Mater. 20(), 2008

Blake, Appl. Phys. Lett. 91(), 2007
Raman spectroscopy as a versatile tool for studying the properties of graphene.
Ferrari AC, Basko DM., Nat Nanotechnol 8(4), 2013
PMID: 23552117
Carrier transport in two-dimensional graphene layers.
Hwang EH, Adam S, Sarma SD., Phys. Rev. Lett. 98(18), 2007
PMID: 17501596

Wiedmann, Phys. Rev. B 84(), 2011
How close can one approach the Dirac point in graphene experimentally?
Mayorov AS, Elias DC, Mukhin IS, Morozov SV, Ponomarenko LA, Novoselov KS, Geim AK, Gorbachev RV., Nano Lett. 12(9), 2012
PMID: 22935053
Dielectric screening enhanced performance in graphene FET.
Chen F, Xia J, Ferry DK, Tao N., Nano Lett. 9(7), 2009
PMID: 19496554

Ong, Phys. Rev. B 86(), 2012
Weak-localization magnetoresistance and valley symmetry in graphene.
McCann E, Kechedzhi K, Fal'ko VI, Suzuura H, Ando T, Altshuler BL., Phys. Rev. Lett. 97(14), 2006
PMID: 17155283
Weak localization in graphene flakes.
Tikhonenko FV, Horsell DW, Gorbachev RV, Savchenko AK., Phys. Rev. Lett. 100(5), 2008
PMID: 18352407

Jauregui, Sol. St. Comm. 151(), 2011
Field-effect tunneling transistor based on vertical graphene heterostructures.
Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Mishchenko A, Georgiou T, Katsnelson MI, Eaves L, Morozov SV, Peres NM, Leist J, Geim AK, Novoselov KS, Ponomarenko LA., Science 335(6071), 2012
PMID: 22300848
Functional single-layer graphene sheets from aromatic monolayers.
Matei DG, Weber NE, Kurasch S, Wundrack S, Woszczyna M, Grothe M, Weimann T, Ahlers F, Stosch R, Kaiser U, Turchanin A., Adv. Mater. Weinheim 25(30), 2013
PMID: 23716462
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24862387
PubMed | Europe PMC

arXiv: 1406.1966

Suchen in

Google Scholar