Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis

Schwegmann A, Lindemann JP, Egelhaaf M (2014)
Frontiers in Computational Neuroscience 8: 83.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way.
Stichworte
optic flow; environments; spatial vision; computational modeling; natural; fly
Erscheinungsjahr
2014
Zeitschriftentitel
Frontiers in Computational Neuroscience
Band
8
Seite(n)
83
ISSN
1662-5188
eISSN
1662-5188
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2694962

Zitieren

Schwegmann A, Lindemann JP, Egelhaaf M. Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis. Frontiers in Computational Neuroscience. 2014;8:83.
Schwegmann, A., Lindemann, J. P., & Egelhaaf, M. (2014). Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis. Frontiers in Computational Neuroscience, 8, 83. doi:10.3389/fncom.2014.00083
Schwegmann, Alexander, Lindemann, Jens Peter, and Egelhaaf, Martin. 2014. “Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis”. Frontiers in Computational Neuroscience 8: 83.
Schwegmann, A., Lindemann, J. P., and Egelhaaf, M. (2014). Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis. Frontiers in Computational Neuroscience 8, 83.
Schwegmann, A., Lindemann, J.P., & Egelhaaf, M., 2014. Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis. Frontiers in Computational Neuroscience, 8, p 83.
A. Schwegmann, J.P. Lindemann, and M. Egelhaaf, “Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis”, Frontiers in Computational Neuroscience, vol. 8, 2014, pp. 83.
Schwegmann, A., Lindemann, J.P., Egelhaaf, M.: Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis. Frontiers in Computational Neuroscience. 8, 83 (2014).
Schwegmann, Alexander, Lindemann, Jens Peter, and Egelhaaf, Martin. “Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis”. Frontiers in Computational Neuroscience 8 (2014): 83.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:26Z
MD5 Prüfsumme
f8ec3c2714be7c779fef2d7b8e1da6b1


12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Image statistics of the environment surrounding freely behaving hoverflies.
Dyakova O, Müller MM, Egelhaaf M, Nordström K., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 205(3), 2019
PMID: 30937518
Head orientation of walking blowflies is controlled by visual and mechanical cues.
Monteagudo J, Lindemann JP, Egelhaaf M., J Exp Biol 220(pt 24), 2017
PMID: 29097591
Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation.
Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A., Nat Neurosci 19(5), 2016
PMID: 26928063
Peripheral Processing Facilitates Optic Flow-Based Depth Perception.
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374

78 References

Daten bereitgestellt von Europe PubMed Central.

Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordstrom K, O'Carroll DC., Curr. Biol. 20(11), 2010
PMID: 20537540
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(12), 2005
PMID: 16133502
Drosophila's view on insect vision.
Borst A., Curr. Biol. 19(1), 2009
PMID: 19138592
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Detecting visual motion: theory and models
Borst A., Egelhaaf M.., 1993
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Depth vision in animals
Collett T., Harkness L.., 1982
Extracting ego-motion from optic flow: limits of accuracy and neuronal filters
Dahmen H., Franz M., Krapp H.., 2000
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
MST neurons respond to optic flow and translational movement.
Duffy CJ., J. Neurophysiol. 80(4), 1998
PMID: 9772241
Gaze strategy in the free flying zebra finch (Taeniopygia guttata).
Eckmeier D, Geurten BR, Kress D, Mertes M, Kern R, Egelhaaf M, Bischof HJ., PLoS ONE 3(12), 2008
PMID: 19107185
The neural computation of visual motion
Egelhaaf M.., 2006
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Movement detection in arthropods
Egelhaaf M., Borst A.., 1993
Outdoor performance of a motion-sensitive neuron in the blowfly.
Egelhaaf M, Grewe J, Kern R, Warzecha AK., Vision Res. 41(27), 2001
PMID: 11712978
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
The analysis of motion in the visual system of birds
Frost B., Wylie D., Wang Y.., 1994
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Monocular and binocular computation of motion in the lobula plate of the fly
Hausen K.., 1981
Motion sensitive interneurons in the optomotor system of the fly. II. The Horizontal Cells: receptive field organization and response characteristics
Hausen K.., 1982
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Subcellular mapping of dendritic activity in optic flow processing neurons.
Hopp E, Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 200(5), 2014
PMID: 24647929
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J. Neurophysiol. 90(3), 2003
PMID: 12736239
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
Facts on optic flow.
Koenderink JJ, van Doorn AJ., Biol Cybern 56(4), 1987
PMID: 3607100
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Neural coding of naturalistic motion stimuli.
Lewen GD, Bialek W, de Ruyter van Steveninck RR., Network 12(3), 2001
PMID: 11563532
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Moller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
The relation of physiological and psychological aspects of sensory intensity
Lipetz L.., 1979
An interative image registration technique with an application to stereo vision
Lucas B., Kanade T.., 1981
A directional tuning map of Drosophila elementary motion detectors.
Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A., Nature 500(7461), 2013
PMID: 23925246
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision.
Mauss AS, Meier M, Serbe E, Borst A., J. Neurosci. 34(6), 2014
PMID: 24501364
Neural circuit components of the Drosophila OFF motion vision pathway.
Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A., Curr. Biol. 24(4), 2014
PMID: 24508173
The free-flight response of Drosophila to motion of the visual environment.
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291
S-potentials from luminosity units in the retina of fish (Cyprinidae).
Naka KI, Rushton WA., J. Physiol. (Lond.) 185(3), 1966
PMID: 5918060
Neural coding of natural stimuli: information at sub-millisecond resolution.
Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR., PLoS Comput. Biol. 4(3), 2008
PMID: 18369423
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
Effect of spatial sampling on pattern noise in insect-based motion detection
Rajesh S.., 2005
Man-made velocity estimators based on insect vision
Rajesh S., O'Carroll D., Abbott D.., 2005
Autocorrelation, a principle for the evaluation of sensory information by the central nervous system
Reichardt W.., 1961
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila.
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Modular use of peripheral input channels tunes motion-detecting circuitry.
Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR., Neuron 79(1), 2013
PMID: 23849199
The accessory optic system.
Simpson JI., Annu. Rev. Neurosci. 7(), 1984
PMID: 6370078
Visual motor computations in insects.
Srinivasan MV, Zhang S., Annu. Rev. Neurosci. 27(), 2004
PMID: 15217347
Colour in the eyes of insects.
Stavenga DG., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(5), 2002
PMID: 12073079
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Direct observation of ON and OFF pathways in the Drosophila visual system.
Strother JA, Nern A, Reiser MB., Curr. Biol. 24(9), 2014
PMID: 24704075
A visual motion detection circuit suggested by Drosophila connectomics.
Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang LA, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB., Nature 500(7461), 2013
PMID: 23925240
Sensory systems and flight stability: what do insects measure and why?
Taylor GK, Krapp HG., Advances in insect physiology. 34(), 2008
PMID: IND44011217

Vaina L., Beardsley S., Rushton S.., 2004
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
A model for the detection of moving targets in visual clutter inspired by insect physiology.
Wiederman SD, Shoemaker PA, O'Carroll DC., PLoS ONE 3(7), 2008
PMID: 18665213
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25136314
PubMed | Europe PMC

Suchen in

Google Scholar