Correlation functions for fully or partially state-resolved reactive scattering calculations

Manthe U, Welsch R (2014)
The Journal of Chemical Physics 140(24): 244113.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larranaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H-2 reaction illustrate important aspects of the formalism. (C) 2014 AIP Publishing LLC.
Erscheinungsjahr
2014
Zeitschriftentitel
The Journal of Chemical Physics
Band
140
Ausgabe
24
Art.-Nr.
244113
ISSN
0021-9606
eISSN
1089-7690
Page URI
https://pub.uni-bielefeld.de/record/2690857

Zitieren

Manthe U, Welsch R. Correlation functions for fully or partially state-resolved reactive scattering calculations. The Journal of Chemical Physics. 2014;140(24): 244113.
Manthe, U., & Welsch, R. (2014). Correlation functions for fully or partially state-resolved reactive scattering calculations. The Journal of Chemical Physics, 140(24), 244113. doi:10.1063/1.4884716
Manthe, Uwe, and Welsch, Ralph. 2014. “Correlation functions for fully or partially state-resolved reactive scattering calculations”. The Journal of Chemical Physics 140 (24): 244113.
Manthe, U., and Welsch, R. (2014). Correlation functions for fully or partially state-resolved reactive scattering calculations. The Journal of Chemical Physics 140:244113.
Manthe, U., & Welsch, R., 2014. Correlation functions for fully or partially state-resolved reactive scattering calculations. The Journal of Chemical Physics, 140(24): 244113.
U. Manthe and R. Welsch, “Correlation functions for fully or partially state-resolved reactive scattering calculations”, The Journal of Chemical Physics, vol. 140, 2014, : 244113.
Manthe, U., Welsch, R.: Correlation functions for fully or partially state-resolved reactive scattering calculations. The Journal of Chemical Physics. 140, : 244113 (2014).
Manthe, Uwe, and Welsch, Ralph. “Correlation functions for fully or partially state-resolved reactive scattering calculations”. The Journal of Chemical Physics 140.24 (2014): 244113.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Natural reaction channels in H + CHD3 → H2 + CD3.
Ellerbrock R, Mantheuwe U., Faraday Discuss 212(0), 2018
PMID: 30226505
Recent advances in quantum scattering calculations on polyatomic bimolecular reactions.
Fu B, Shan X, Zhang DH, Clary DC., Chem Soc Rev 46(24), 2017
PMID: 29143835
Recent Advances in Quantum Dynamics of Bimolecular Reactions.
Zhang DH, Guo H., Annu Rev Phys Chem 67(), 2016
PMID: 26980305

84 References

Daten bereitgestellt von Europe PubMed Central.

Experimental and theoretical differential cross sections for a four-atom reaction: HD + OH → H₂O + D.
Xiao C, Xu X, Liu S, Wang T, Dong W, Yang T, Sun Z, Dai D, Xu X, Zhang DH, Yang X., Science 333(6041), 2011
PMID: 21778397

AUTHOR UNKNOWN, 0
Mode- and bond-selective reaction of Cl(2P3/2) with CH3D: C-H stretch overtone excitation near 6000 cm(-1).
Holiday RJ, Kwon CH, Annesley CJ, Fleming Crim F., J Chem Phys 125(13), 2006
PMID: 17029427
Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom?
Yan S, Wu YT, Zhang B, Yue XF, Liu K., Science 316(5832), 2007
PMID: 17588925
Tracking the energy flow along the reaction path.
Yan S, Wu YT, Liu K., Proc. Natl. Acad. Sci. U.S.A. 105(35), 2008
PMID: 18664573
State-specific correlation of coincident product pairs in the F + CD4 reaction.
Lin JJ, Zhou J, Shiu W, Liu K., Science 300(5621), 2003
PMID: 12738861
Reactive resonance in a polyatomic reaction.
Shiu W, Lin JJ, Liu K., Phys. Rev. Lett. 92(10), 2004
PMID: 15089205
Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F+CH4-->HF+CH3 reaction.
Czako G, Shepler BC, Braams BJ, Bowman JM., J Chem Phys 130(8), 2009
PMID: 19256605
CH stretching excitation steers the F atom to the CD bond in the F + CHD3 reaction.
Czako G, Bowman JM., J. Am. Chem. Soc. 131(48), 2009
PMID: 19908862
Theoretical Study of the Validity of the Polanyi Rules for the Late-Barrier Cl + CHD3 Reaction.
Zhang Z, Zhou Y, Zhang DH, Czako G, Bowman JM., J Phys Chem Lett 3(23), 2012
PMID: 26290965

AUTHOR UNKNOWN, 0
Dynamics of the O(3P) + CHD3(vCH = 0,1) reactions on an accurate ab initio potential energy surface.
Czako G, Bowman JM., Proc. Natl. Acad. Sci. U.S.A. 109(21), 2012
PMID: 22566657

AUTHOR UNKNOWN, 0
A transition state wave packet study of the H+CH4 reaction.
Zhang L, Lu Y, Lee SY, Zhang DH., J Chem Phys 127(23), 2007
PMID: 18154388
Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction.
Zhang W, Zhou Y, Wu G, Lu Y, Pan H, Fu B, Shuai Q, Liu L, Liu S, Zhang L, Jiang B, Dai D, Lee SY, Xie Z, Xie Z, Braams BJ, Bowman JM, Collins MA, Zhang DH, Yang X., Proc. Natl. Acad. Sci. U.S.A. 107(29), 2010
PMID: 20615988
Seven-dimensional quantum dynamics study of the O(3P)+CH4 reaction.
Yang M, Lee SY, Zhang DH., J Chem Phys 126(6), 2007
PMID: 17313211

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
First-principles theory for the H + CH4 --> H2 + CH3 reaction.
Wu T, Werner HJ, Manthe U., Science 306(5705), 2004
PMID: 15618512

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
State-to-state reaction probabilities within the quantum transition state framework.
Welsch R, Huarte-Larranaga F, Manthe U., J Chem Phys 136(6), 2012
PMID: 22360179

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24985624
PubMed | Europe PMC

Suchen in

Google Scholar