Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock

Korneli C, Danisman S, Staiger D (2014)
Plant & Cell Physiology 55(9): 1613-1622.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Plants show a suite of inducible defense responses against bacterial pathogens. Here we investigate in detail the effect of the circadian clock on these reactions in Arabidopsis thaliana. The magnitude of immune responses elicited by flg22, by virulent and by avirulent Pseudomonas syringae strains depends on the time of day of inoculation. The oxidative burst is stronger when flg22 is infiltrated in the morning in wild-type plants but not in the arrhythmic clock mutant lux arrhythmo/phytoclock1 (pcl1), and thus is controlled by the endogenous clock. Similarly, when bacteria are syringe-infiltrated into the leaf, defense gene induction is higher and bacterial growth is suppressed more strongly after morning inoculation in wild-type but not in pcl1 plants. Furthermore, cell death associated with the hypersensitive response was found to be under clock control. Notably, the clock effect depends on the mode of infection: upon spray inoculation onto the leaf surface, defense gene induction is higher and bacterial growth is suppressed more strongly upon evening inoculation. This different phasing of pre-invasive and post-invasive defense relates to clock-regulated stomatal movement. In particular, TIME FOR COFFEE may impact pathogen defense via clock-regulated stomata movement apart from its known role in time-of-day-dependent jasmonate responses. Taken together, these data highlight the importance of the circadian clock for the control of different immune responses at distinct times of the day. The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Erscheinungsjahr
2014
Zeitschriftentitel
Plant & Cell Physiology
Band
55
Ausgabe
9
Seite(n)
1613-1622
ISSN
0032-0781
eISSN
1471-9053
Page URI
https://pub.uni-bielefeld.de/record/2685506

Zitieren

Korneli C, Danisman S, Staiger D. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Plant & Cell Physiology. 2014;55(9):1613-1622.
Korneli, C., Danisman, S., & Staiger, D. (2014). Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Plant & Cell Physiology, 55(9), 1613-1622. doi:10.1093/pcp/pcu092
Korneli, Christin, Danisman, Selahattin, and Staiger, Dorothee. 2014. “Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock”. Plant & Cell Physiology 55 (9): 1613-1622.
Korneli, C., Danisman, S., and Staiger, D. (2014). Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Plant & Cell Physiology 55, 1613-1622.
Korneli, C., Danisman, S., & Staiger, D., 2014. Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Plant & Cell Physiology, 55(9), p 1613-1622.
C. Korneli, S. Danisman, and D. Staiger, “Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock”, Plant & Cell Physiology, vol. 55, 2014, pp. 1613-1622.
Korneli, C., Danisman, S., Staiger, D.: Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock. Plant & Cell Physiology. 55, 1613-1622 (2014).
Korneli, Christin, Danisman, Selahattin, and Staiger, Dorothee. “Differential control of pre-invasive and post-invasive antibacterial defense by the Arabidopsis circadian clock”. Plant & Cell Physiology 55.9 (2014): 1613-1622.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity.
Zhang J, Ren Z, Zhou Y, Ma Z, Ma Y, Hou D, Xu Z, Huang X., Int J Mol Sci 20(5), 2019
PMID: 30857376
Redox and the circadian clock in plant immunity: A balancing act.
Karapetyan S, Dong X., Free Radic Biol Med 119(), 2018
PMID: 29274381
Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves.
Santamaría-Hernando S, Rodríguez-Herva JJ, Martínez-García PM, Río-Álvarez I, González-Melendi P, Zamorano J, Tapia C, Rodríguez-Palenzuela P, López-Solanilla E., Environ Microbiol 20(12), 2018
PMID: 30058114
Tick Tock: Circadian Regulation of Plant Innate Immunity.
Lu H, McClung CR, Zhang C., Annu Rev Phytopathol 55(), 2017
PMID: 28590878
Circadian clocks and the regulation of virulence in fungi: Getting up to speed.
Hevia MA, Canessa P, Larrondo LF., Semin Cell Dev Biol 57(), 2016
PMID: 27039027
Circadian regulation of hormone signaling and plant physiology.
Atamian HS, Harmer SL., Plant Mol Biol 91(6), 2016
PMID: 27061301
Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants.
Nitschke S, Cortleven A, Iven T, Feussner I, Havaux M, Riefler M, Schmülling T., Plant Cell 28(7), 2016
PMID: 27354555
Circadian Clock Genes Universally Control Key Agricultural Traits.
Bendix C, Marshall CM, Harmon FG., Mol Plant 8(8), 2015
PMID: 25772379
Integrating circadian dynamics with physiological processes in plants.
Greenham K, McClung CR., Nat Rev Genet 16(10), 2015
PMID: 26370901

56 References

Daten bereitgestellt von Europe PubMed Central.

Bacterial elicitation and evasion of plant innate immunity.
Abramovitch RB, Anderson JC, Martin GB., Nat. Rev. Mol. Cell Biol. 7(8), 2006
PMID: 16936700
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA., Science 293(5531), 2001
PMID: 11486091
MAP kinase signalling cascade in Arabidopsis innate immunity.
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J., Nature 415(6875), 2002
PMID: 11875555

AUTHOR UNKNOWN, Plant Cell Tissue Organ Cult. 39(), 1994
Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock.
Bhardwaj V, Meier S, Petersen LN, Ingle RA, Roden LC., PLoS ONE 6(10), 2011
PMID: 22066021
TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock.
Ding Z, Millar AJ, Davis AM, Davis SJ., Plant Cell 19(5), 2007
PMID: 17496120

AUTHOR UNKNOWN, Curr. Biol. 25(), 2011
Plant immunity: towards an integrated view of plant-pathogen interactions.
Dodds PN, Rathjen JP., Nat. Rev. Genet. 11(8), 2010
PMID: 20585331
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.
Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA., Science 309(5734), 2005
PMID: 16040710
Molecular bases for circadian clocks.
Dunlap JC., Cell 96(2), 1999
PMID: 9988221
Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock.
Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA., Curr. Biol. 15(1), 2005
PMID: 15649364
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA., Proc. Natl. Acad. Sci. U.S.A. 109(8), 2012
PMID: 22315425
Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis.
Genoud T, Buchala AJ, Chua NH, Metraux JP., Plant J. 31(1), 2002
PMID: 12100485
Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior.
Goodspeed D, Chehab EW, Min-Venditti A, Braam J, Covington MF., Proc. Natl. Acad. Sci. U.S.A. 109(12), 2012
PMID: 22331878

AUTHOR UNKNOWN, Physiol. Mol. Plant Pathol. 42(), 1993
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Koster T, Wiedenlubbert M, Muller C, Staiger D., Plant Cell Environ. 37(3), 2013
PMID: 23961939
The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks.
Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, Amasino RM, Millar AJ., Plant Cell 15(11), 2003
PMID: 14555691
LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms.
Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA., Proc. Natl. Acad. Sci. U.S.A. 102(29), 2005
PMID: 16006522
LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock.
Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA., Curr. Biol. 21(2), 2011
PMID: 21236673
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y., J. Biol. Chem. 286(50), 2011
PMID: 22013065
The plant immune system.
Jones JD, Dangl JL., Nature 444(7117), 2006
PMID: 17108957
Metabolic environments and genomic features associated with pathogenic and mutualistic interactions between bacteria and plants.
Karpinets TV, Park BH, Syed MH, Klotz MG, Uberbacher EC., Mol. Plant Microbe Interact. 27(7), 2014
PMID: 24580106
COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine.
Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA., Proc. Natl. Acad. Sci. U.S.A. 105(19), 2008
PMID: 18458331
Plant circadian rhythms.
McClung CR., Plant Cell 18(4), 2006
PMID: 16595397

AUTHOR UNKNOWN, Plant Signal Behav 8(), 2013
Role of stomata in plant innate immunity and foliar bacterial diseases.
Melotto M, Underwood W, He SY., Annu Rev Phytopathol 46(), 2008
PMID: 18422426
Plant stomata function in innate immunity against bacterial invasion.
Melotto M, Underwood W, Koczan J, Nomura K, He SY., Cell 126(5), 2006
PMID: 16959575
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H., Plant Cell 22(3), 2010
PMID: 20233950
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7.
Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C., EMBO J. 32(5), 2013
PMID: 23395902
Circadian rhythms persist without transcription in a eukaryote.
O'Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ., Nature 469(7331), 2011
PMID: 21270895
Resonating circadian clocks enhance fitness in cyanobacteria.
Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH., Proc. Natl. Acad. Sci. U.S.A. 95(15), 1998
PMID: 9671734
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154

AUTHOR UNKNOWN, PLoS Comput. Biol. 9(), 2013
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schoning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J. 52(6), 2007
PMID: 17924945
The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches.
Staiger D, Heintzen C., Chronobiol. Int. 16(1), 1999
PMID: 10023572
Emerging role for RNA-based regulation in plant immunity.
Staiger D, Korneli C, Lummer M, Navarro L., New Phytol. 197(2), 2012
PMID: 23163405
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol. 10(), 2010
PMID: 20946635
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
Timing of plant immune responses by a central circadian regulator.
Wang W, Barnaby JY, Tada Y, Li H, Tor M, Caldelari D, Lee DU, Fu XD, Dong X., Nature 470(7332), 2011
PMID: 21293378
A xylogalacturonan epitope is specifically associated with plant cell detachment.
Willats WG, McCartney L, Steele-King CG, Marcus SE, Mort A, Huisman M, van Alebeek GJ, Schols HA, Voragen AG, Le Goff A, Bonnin E, Thibault JF, Knox JP., Planta 218(4), 2003
PMID: 14618325

AUTHOR UNKNOWN, Plant Physiol. 153(), 2013

AUTHOR UNKNOWN, PLoS Pathog. 9(), 2013
Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation.
Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X., Cell Host Microbe 11(6), 2012
PMID: 22704619
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756317
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24974385
PubMed | Europe PMC

Suchen in

Google Scholar