Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media

Gröger H, Hummel W (2014)
Current opinion in chemical biology 19: 171-179.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The combination of biocatalytic and chemocatalytic reactions leading to one-pot processes in aqueous medium represents an economically and ecologically attractive concept in organic synthesis due to the potential to avoid time and capacity consuming and waste producing work-up steps of intermediates. The use of water as a solvent has many advantages. A key feature is the opportunity it provides as the solvent in nature to make use of the full range of enzymes. In recent years development of chemoenzymatic one-pot processes in water has emerged tremendously, and proof of concepts for the combination of biotransformations with metal catalysts and organocatalysts were demonstrated. This review will focus on major contributions in this field, which also underline the compatibility of these two 'worlds' of catalysis with each other as well as the industrial potential of this one-pot approach.
Erscheinungsjahr
2014
Zeitschriftentitel
Current opinion in chemical biology
Band
19
Seite(n)
171-179
ISSN
1367-5931
Page URI
https://pub.uni-bielefeld.de/record/2682298

Zitieren

Gröger H, Hummel W. Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Current opinion in chemical biology. 2014;19:171-179.
Gröger, H., & Hummel, W. (2014). Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Current opinion in chemical biology, 19, 171-179. doi:10.1016/j.cbpa.2014.03.002
Gröger, Harald, and Hummel, Werner. 2014. “Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media”. Current opinion in chemical biology 19: 171-179.
Gröger, H., and Hummel, W. (2014). Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Current opinion in chemical biology 19, 171-179.
Gröger, H., & Hummel, W., 2014. Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Current opinion in chemical biology, 19, p 171-179.
H. Gröger and W. Hummel, “Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media”, Current opinion in chemical biology, vol. 19, 2014, pp. 171-179.
Gröger, H., Hummel, W.: Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Current opinion in chemical biology. 19, 171-179 (2014).
Gröger, Harald, and Hummel, Werner. “Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media”. Current opinion in chemical biology 19 (2014): 171-179.

26 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Chemoenzymatic Route to Oxyfunctionalized Cembranoids Facilitated by Substrate and Protein Engineering.
Le-Huu P, Rekow D, Krüger C, Bokel A, Heidt T, Schaubach S, Claasen B, Hölzel S, Frey W, Laschat S, Urlacher VB., Chemistry 24(46), 2018
PMID: 29974561
A Retrosynthesis Approach for Biocatalysis in Organic Synthesis.
de Souza ROMA, Miranda LSM, Bornscheuer UT., Chemistry 23(50), 2017
PMID: 28514518
Cascades in Compartments: En Route to Machine-Assisted Biotechnology.
Rabe KS, Müller J, Skoupi M, Niemeyer CM., Angew Chem Int Ed Engl 56(44), 2017
PMID: 28691387
Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar.
Suastegui M, Matthiesen JE, Carraher JM, Hernandez N, Rodriguez Quiroz N, Okerlund A, Cochran EW, Shao Z, Tessonnier JP., Angew Chem Int Ed Engl 55(7), 2016
PMID: 26840213
Cascade synthesis of a gold nanoparticle-network polymer composite.
Grubjesic S, Ringstrand BS, Jungjohann KL, Brombosz SM, Seifert S, Firestone MA., Nanoscale 8(5), 2016
PMID: 26524426
Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation.
Latham J, Henry JM, Sharif HH, Menon BR, Shepherd SA, Greaney MF, Micklefield J., Nat Commun 7(), 2016
PMID: 27283121
Whole-Cell-Catalyzed Multiple Regio- and Stereoselective Functionalizations in Cascade Reactions Enabled by Directed Evolution.
Li A, Ilie A, Sun Z, Lonsdale R, Xu JH, Reetz MT., Angew Chem Int Ed Engl 55(39), 2016
PMID: 27573978
A One-Pot Cascade Reaction Combining an Encapsulated Decarboxylase with a Metathesis Catalyst for the Synthesis of Bio-Based Antioxidants.
Gómez Baraibar Á, Reichert D, Mügge C, Seger S, Gröger H, Kourist R., Angew Chem Int Ed Engl 55(47), 2016
PMID: 27754591
Discovery and structural characterisation of new fold type IV-transaminases exemplify the diversity of this enzyme fold.
Pavkov-Keller T, Strohmeier GA, Diepold M, Peeters W, Smeets N, Schürmann M, Gruber K, Schwab H, Steiner K., Sci Rep 6(), 2016
PMID: 27905516
Artificial concurrent catalytic processes involving enzymes.
Köhler V, Turner NJ., Chem Commun (Camb) 51(3), 2015
PMID: 25350691
Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts.
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R., Biotechnol Adv 33(5), 2015
PMID: 25777494
Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.
Ríos-Lombardía N, Vidal C, Cocina M, Morís F, García-Álvarez J, González-Sabín J., Chem Commun (Camb) 51(54), 2015
PMID: 26062926
Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology.
Fan A, Winkelblech J, Li SM., Appl Microbiol Biotechnol 99(18), 2015
PMID: 26227408
The Industrial Age of Biocatalytic Transamination.
Fuchs M, Farnberger JE, Kroutil W., European J Org Chem 2015(32), 2015
PMID: 26726292
A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.
Sirasani G, Tong L, Balskus EP., Angew Chem Int Ed Engl 53(30), 2014
PMID: 24916924
Stereoselective synthesis of γ-hydroxynorvaline through combination of organo- and biocatalysis.
Simon RC, Busto E, Schrittwieser JH, Sattler JH, Pietruszka J, Faber K, Kroutil W., Chem Commun (Camb) 50(99), 2014
PMID: 25251725

30 References

Daten bereitgestellt von Europe PubMed Central.


Arends, 2007
Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert
Bruggink, Org Proc Res Dev 7(), 2003
Combined action of enzyme and metal catalyst, applied to the preparation of d-mannitol
Makkee, J C S Chem Commun (), 1980
Combined action of an enzyme and a metal catalyst on the conversion of d-glucose/d-fructose mixtures into d-mannitol
Makkee, Carbohydr Res 138(), 1985
Simultaneous action of RuY zeolite and glucose isomerase in the production of d-mannitol from d-glucose
Ruddlesden, J Chem Res (S) (), 1981
Dynamic kinetic resolution with enzyme and palladium combinations
Allen, Tetrahedron Lett 37(), 1996
Catalytic racemisation of alcohols: applications to enzymatic resolution reactions
Dinh, Tetrahedron Lett 37(), 1996
Resolution of amino acids in a mixture of 2-methyl-2-propanol/water (19:1) catalyzed by alcalase via in situ racemization of one antipode mediated by pyridoxal 5-phosphate
Chen, J Org Chem 59(), 1994

AUTHOR UNKNOWN, 0
Enzymatic resolution of alcohols coupled with ruthenium-catalyzed racemization of the substrate alcohol
Larsson, Angew Chem Int Ed Engl 36(), 1997
Aminocyclopentadienyl ruthenium chloride: catalytic racemization and dynamic kinetic resolution of alcohols at ambient temperature.
Choi JH, Kim YH, Nam SH, Shin ST, Kim MJ, Park J., Angew. Chem. Int. Ed. Engl. 41(13), 2002
PMID: 12203597
Lipase/aluminum-catalyzed dynamic kinetic resolution of secondary alcohols.
Berkessel A, Sebastian-Ibarz ML, Muller TN., Angew. Chem. Int. Ed. Engl. 45(39), 2006
PMID: 16952181
Towards catalytic cascade reactions: asymmetric synthesis using combined chemo-enzymatic catalysts
Simons, Top Catal 40(), 2006
Single operation stereoselective synthesis of Aerangis lactones: combining continuous flow hydrogenation and biocatalysts in a chemoenzymatic sequence
Fink, ChemCatChem 5(), 2013
Suzuki-Miyaura cross-coupling catalyzed by protein-stabilized palladium nanoparticles under aerobic conditions in water: application to a one-pot chemoenzymatic enantioselective synthesis of chiral biaryl alcohols
Prastaro, Green Chem 11(), 2009
Highly recyclable chemo-/biocatalyzed cascade reactions with ionic liquids: one-pot synthesis of chiral biaryl alcohols
Gauchot, Chem Eur J 16(), 2010
Combination of a Suzuki cross-coupling reaction using a water-soluble palladium catalyst with an asymmetric enzymatic reduction towards a one-pot process in aqueous medium at room temperature
Borchert, J Mol Cat B Enzym 84(), 2012
The Heck reaction of allylic alcohols catalyzed by palladium nanoparticles in water: chemoenzymatic synthesis of (R)-(−)-rhododendrol
Boffi, ChemCatChem 3(), 2011
Chiral (R)- and (S)-allylic alcohols via a one-pot chemoenzymatic synthesis
Sgalla, Tetrahedron Asymmetry 18(), 2007
Formal asymmetric hydration of non-activated alkenes in aqueous medium through a ‘chemoenzymatic catalytic system
Schnapperelle, Chem Eur J 18(), 2012
Combination of olefin metathesis and enzymatic ester hydrolysis in aqueous media in a one-pot synthesis
Tenbrink, Adv Synth Catal 353(), 2011
Cooperative tandem catalysis by an organometallic complex and a metalloenzyme.
Denard CA, Huang H, Bartlett MJ, Lu L, Tan Y, Zhao H, Hartwig JF., Angew. Chem. Int. Ed. Engl. 53(2), 2014
PMID: 24536102
Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes.
Kohler V, Wilson YM, Durrenberger M, Ghislieri D, Churakova E, Quinto T, Knorr L, Haussinger D, Hollmann F, Turner NJ, Ward TR., Nat Chem 5(2), 2012
PMID: 23344429

Berkessel, 2005
Sequential and modular synthesis of chiral 1,3-diols with two stereogenic centers: access to all four stereoisomers by combination of organo- and biocatalysis.
Baer K, Krausser M, Burda E, Hummel W, Berkessel A, Groger H., Angew. Chem. Int. Ed. Engl. 48(49), 2009
PMID: 19902444
Direction of kinetically versus thermodynamically controlled organocatalysis and its application in chemoenzymatic synthesis.
Rulli G, Duangdee N, Baer K, Hummel W, Berkessel A, Groger H., Angew. Chem. Int. Ed. Engl. 50(34), 2011
PMID: 21744441
Combined catalytic conversion involving an enzyme, a homogeneous and a heterogeneous catalyst: one-pot preparation of 4-deoxy-d-glucose derivatives from d-galactose
Schoevaart, Tetrahedron Lett 43(), 2002
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24709123
PubMed | Europe PMC

Suchen in

Google Scholar