A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule

Lawson L, Chan J, Huser T (2014)
Nanoscale 6(14): 7971-7980.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lawson, Latevi; Chan, James; Huser, ThomasUniBi
Erscheinungsjahr
2014
Zeitschriftentitel
Nanoscale
Band
6
Ausgabe
14
Seite(n)
7971-7980
ISSN
2040-3364
eISSN
2040-3372
Page URI
https://pub.uni-bielefeld.de/record/2680241

Zitieren

Lawson L, Chan J, Huser T. A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule. Nanoscale. 2014;6(14):7971-7980.
Lawson, L., Chan, J., & Huser, T. (2014). A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule. Nanoscale, 6(14), 7971-7980. doi:10.1039/c3nr06277e
Lawson, Latevi, Chan, James, and Huser, Thomas. 2014. “A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule”. Nanoscale 6 (14): 7971-7980.
Lawson, L., Chan, J., and Huser, T. (2014). A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule. Nanoscale 6, 7971-7980.
Lawson, L., Chan, J., & Huser, T., 2014. A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule. Nanoscale, 6(14), p 7971-7980.
L. Lawson, J. Chan, and T. Huser, “A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule”, Nanoscale, vol. 6, 2014, pp. 7971-7980.
Lawson, L., Chan, J., Huser, T.: A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule. Nanoscale. 6, 7971-7980 (2014).
Lawson, Latevi, Chan, James, and Huser, Thomas. “A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule”. Nanoscale 6.14 (2014): 7971-7980.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Exploring the Potentiality of a SERS-Active pH Nano-Biosensor.
Capocefalo A, Mammucari D, Brasili F, Fasolato C, Bordi F, Postorino P, Domenici F., Front Chem 7(), 2019
PMID: 31231638
Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe.
Li S, Liu Z, Su C, Chen H, Fei X, Guo Z., Anal Bioanal Chem 409(5), 2017
PMID: 27838754
Highly stable SERS pH nanoprobes produced by co-solvent controlled AuNP aggregation.
Wei H, Willner MR, Marr LC, Vikesland PJ., Analyst 141(17), 2016
PMID: 27143623
Bio-Enabled Gold Superstructures with Built-In and Accessible Electromagnetic Hotspots.
Tian L, Fei M, Tadepalli S, Morrissey JJ, Kharasch ED, Singamaneni S., Adv Healthc Mater 4(10), 2015
PMID: 25981873
Towards high-throughput microfluidic Raman-activated cell sorting.
Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, Xu J, Ma B., Analyst 140(18), 2015
PMID: 26225617
Au nanoflower-Ag nanoparticle assembled SERS-active substrates for sensitive MC-LR detection.
Zhao Y, Yang X, Li H, Luo Y, Yu R, Zhang L, Yang Y, Song Q., Chem Commun (Camb) 51(95), 2015
PMID: 26426931

34 References

Daten bereitgestellt von Europe PubMed Central.


Agel, Arch. Microbiol. 149(), 1987
Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells.
Benson DM, Bryan J, Plant AL, Gotto AM Jr, Smith LC., J. Cell Biol. 100(4), 1985
PMID: 3920227
Applications of ratio fluorescence microscopy in the study of cell physiology.
Dunn KW, Mayor S, Myers JN, Maxfield FR., FASEB J. 8(9), 1994
PMID: 8005385
Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy.
Widengren J, Chmyrov A, Eggeling C, Lofdahl PA, Seidel CA., J Phys Chem A 111(3), 2007
PMID: 17228891
Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy.
Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS., Proc. Natl. Acad. Sci. U.S.A. 106(32), 2009
PMID: 19666578
Single nanoparticle based optical pH probe.
Jensen RA, Sherin J, Emory SR., Appl Spectrosc 61(8), 2007
PMID: 17716401
Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres.
Lee S, Chon H, Lee M, Choo J, Shin SY, Lee YH, Rhyu IJ, Son SW, Oh CH., Biosens Bioelectron 24(7), 2008
PMID: 19056254
Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles.
Schwartzberg AM, Oshiro TY, Zhang JZ, Huser T, Talley CE., Anal. Chem. 78(13), 2006
PMID: 16808490
Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints.
Chen T, Wang H, Chen G, Wang Y, Feng Y, Teo WS, Wu T, Chen H., ACS Nano 4(6), 2010
PMID: 20509669

Moskovits, Chem. Phys. Lett. 397(), 2004
Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates.
Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ., Nano Lett. 5(8), 2005
PMID: 16089490
Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy.
Wustholz KL, Henry AI, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP., J. Am. Chem. Soc. 132(31), 2010
PMID: 20681724
Isolating and probing the hot spot formed between two silver nanocubes.
Camargo PH, Rycenga M, Au L, Xia Y., Angew. Chem. Int. Ed. Engl. 48(12), 2009
PMID: 19199309
In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates.
Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K., Nano Lett. 6(10), 2006
PMID: 17034088
Mapping local pH in live cells using encapsulated fluorescent SERS nanotags.
Pallaoro A, Braun GB, Reich NO, Moskovits M., Small 6(5), 2010
PMID: 20183812

Braun, J. Phys. Chem. C 113(), 2009
Rapid, solution-based characterization of optimized SERS nanoparticle substrates.
Laurence TA, Braun G, Talley C, Schwartzberg A, Moskovits M, Reich N, Huser T., J. Am. Chem. Soc. 131(1), 2009
PMID: 19063599
Intracellular pH sensors based on surface-enhanced raman scattering.
Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T., Anal. Chem. 76(23), 2004
PMID: 15571360
All-optical nanoscale pH meter.
Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR, Johnson DH, Halas NJ., Nano Lett. 6(8), 2006
PMID: 16895357
Automated method for subtraction of fluorescence from biological Raman spectra.
Lieber CA, Mahadevan-Jansen A., Appl Spectrosc 57(11), 2003
PMID: 14658149

Corbett, Chem.–Eur. J. 14(), 2008

Lee, Journal of Physical Chemistry 86(), 1982

Newman, J. Org. Chem. 31(), 1966

Jain, Nano Today 2(), 2007

Link, J. Phys. Chem. B 103(), 1999

Lim, J. Phys. Chem. C 112(), 2008
Adsorption of 1,3-benzenedithiol and 1,3-benzenedimethanethiol on gold surfaces.
Lim JK, Kim Y, Kwon O, Joo SW., Chemphyschem 9(12), 2008
PMID: 18668492
Evolution of size and shape in the colloidal crystallization of gold nanoparticles.
Compton OC, Osterloh FE., J. Am. Chem. Soc. 129(25), 2007
PMID: 17550247
Regulation of organelle acidity.
Grabe M, Oster G., J. Gen. Physiol. 117(4), 2001
PMID: 11279253
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24902897
PubMed | Europe PMC

Suchen in

Google Scholar