Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers

Fricke F, Malkusch S, Wangorsch G, Greiner J, Kaltschmidt B, Kaltschmidt C, Widera D, Dandekar T, Heilemann M (2014)
Histochem Cell Biol 142(1): 91-101.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fricke, Franziska; Malkusch, Sebastian; Wangorsch, Gaby; Greiner, JohannesUniBi ; Kaltschmidt, BarbaraUniBi; Kaltschmidt, ChristianUniBi; Widera, DariusUniBi ; Dandekar, Thomas; Heilemann, Mike
Erscheinungsjahr
2014
Zeitschriftentitel
Histochem Cell Biol
Band
142
Ausgabe
1
Seite(n)
91-101
ISSN
0948-6143
eISSN
1432-119X
Page URI
https://pub.uni-bielefeld.de/record/2678048

Zitieren

Fricke F, Malkusch S, Wangorsch G, et al. Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochem Cell Biol. 2014;142(1):91-101.
Fricke, F., Malkusch, S., Wangorsch, G., Greiner, J., Kaltschmidt, B., Kaltschmidt, C., Widera, D., et al. (2014). Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochem Cell Biol, 142(1), 91-101. doi:10.1007/s00418-014-1195-0
Fricke, F., Malkusch, S., Wangorsch, G., Greiner, J., Kaltschmidt, B., Kaltschmidt, C., Widera, D., Dandekar, T., and Heilemann, M. (2014). Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochem Cell Biol 142, 91-101.
Fricke, F., et al., 2014. Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochem Cell Biol, 142(1), p 91-101.
F. Fricke, et al., “Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers”, Histochem Cell Biol, vol. 142, 2014, pp. 91-101.
Fricke, F., Malkusch, S., Wangorsch, G., Greiner, J., Kaltschmidt, B., Kaltschmidt, C., Widera, D., Dandekar, T., Heilemann, M.: Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochem Cell Biol. 142, 91-101 (2014).
Fricke, Franziska, Malkusch, Sebastian, Wangorsch, Gaby, Greiner, Johannes, Kaltschmidt, Barbara, Kaltschmidt, Christian, Widera, Darius, Dandekar, Thomas, and Heilemann, Mike. “Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers”. Histochem Cell Biol 142.1 (2014): 91-101.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Model-based identification of TNFα-induced IKKβ-mediated and IκBα-mediated regulation of NFκB signal transduction as a tool to quantify the impact of drug-induced liver injury compounds.
Oppelt A, Kaschek D, Huppelschoten S, Sison-Young R, Zhang F, Buck-Wiese M, Herrmann F, Malkusch S, Krüger CL, Meub M, Merkt B, Zimmermann L, Schofield A, Jones RP, Malik H, Schilling M, Heilemann M, van de Water B, Goldring CE, Park BK, Timmer J, Klingmüller U., NPJ Syst Biol Appl 4(), 2018
PMID: 29900006
Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors.
Valley CC, Lewis AK, Sachs JN., Biochim Biophys Acta Biomembr 1859(9 pt a), 2017
PMID: 28089689
An Innovative High-Throughput Screening Approach for Discovery of Small Molecules That Inhibit TNF Receptors.
Lo CH, Vunnam N, Lewis AK, Chiu TL, Brummel BE, Schaaf TM, Grant BD, Bawaskar P, Thomas DD, Sachs JN., SLAS Discov 22(8), 2017
PMID: 28530838
NF-κB signaling and cell-fate decision induced by a fast-dissociating tumor necrosis factor mutant.
Zhang X, Yin N, Guo A, Zhang Q, Zhang Y, Xu Y, Liu H, Tang B, Lai L., Biochem Biophys Res Commun 489(3), 2017
PMID: 28554843
Natural Conformational Sampling of Human TNFα Visualized by Double Electron-Electron Resonance.
Carrington B, Myers WK, Horanyi P, Calmiano M, Lawson ADG., Biophys J 113(2), 2017
PMID: 28746848
Death Receptor 5 Activation Is Energetically Coupled to Opening of the Transmembrane Domain Dimer.
Vunnam N, Campbell-Bezat CK, Lewis AK, Sachs JN., Biophys J 113(2), 2017
PMID: 28746849
CRISPR-Cas9 Mediated Labelling Allows for Single Molecule Imaging and Resolution.
Khan AO, Simms VA, Pike JA, Thomas SG, Morgan NV., Sci Rep 7(1), 2017
PMID: 28814796
Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization.
Krüger CL, Zeuner MT, Cottrell GS, Widera D, Heilemann M., Sci Signal 10(503), 2017
PMID: 29089449
Super-Resolution Imaging of Plasma Membrane Proteins with Click Chemistry.
Mateos-Gil P, Letschert S, Doose S, Sauer M., Front Cell Dev Biol 4(), 2016
PMID: 27668214
Single-molecule methods to study membrane receptor oligomerization.
Fricke F, Dietz MS, Heilemann M., Chemphyschem 16(4), 2015
PMID: 25521567
The Histochemistry and Cell Biology pandect: the year 2014 in review.
Taatjes DJ, Roth J., Histochem Cell Biol 143(4), 2015
PMID: 25744491
Artifacts in single-molecule localization microscopy.
Burgert A, Letschert S, Doose S, Sauer M., Histochem Cell Biol 144(2), 2015
PMID: 26138928
In this special issue.
Roth J, Heilemann M., Histochem Cell Biol 142(1), 2014
PMID: 24898544

55 References

Daten bereitgestellt von Europe PubMed Central.

Quantitative photo activated localization microscopy: unraveling the effects of photoblinking.
Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A., PLoS ONE 6(7), 2011
PMID: 21818365
Optical thermophoresis for quantifying the buffer dependence of aptamer binding.
Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D., Angew. Chem. Int. Ed. Engl. 49(12), 2010
PMID: 20186894
Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation.
Banner DW, D'Arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger C, Loetscher H, Lesslauer W., Cell 73(3), 1993
PMID: 8387891
Imaging intracellular fluorescent proteins at nanometer resolution.
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF., Science 313(5793), 2006
PMID: 16902090
Single chain TNF derivatives with individually mutated receptor binding sites reveal differential stoichiometry of ligand receptor complex formation for TNFR1 and TNFR2.
Boschert V, Krippner-Heidenreich A, Branschadel M, Tepperink J, Aird A, Scheurich P., Cell. Signal. 22(7), 2010
PMID: 20206684
Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies.
Brockhaus M, Schoenfeld HJ, Schlaeger EJ, Hunziker W, Lesslauer W, Loetscher H., Proc. Natl. Acad. Sci. U.S.A. 87(8), 1990
PMID: 2158104
A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling.
Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ., Science 288(5475), 2000
PMID: 10875917
Binding efficiency of protein-protein complexes.
Day ES, Cote SM, Whitty A., Biochemistry 51(45), 2012
PMID: 23088250
Receptor-ligand interactions: binding affinities studied by single-molecule and super-resolution microscopy on intact cells.
Dietz MS, Fricke F, Kruger CL, Niemann HH, Heilemann M., Chemphyschem 15(4), 2014
PMID: 24772464
Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells.
Dietz MS, Haße D, Ferraris DM, Gohler A, Niemann HH, Heilemann M., BMC Biophys 6(1), 2013
PMID: 23731667
Why molecules move along a temperature gradient.
Duhr S, Braun D., Proc. Natl. Acad. Sci. U.S.A. 103(52), 2006
PMID: 17164337
Chemically induced photoswitching of fluorescent probes--a general concept for super-resolution microscopy.
Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P, Verveer PJ, Heilemann M., Molecules 16(4), 2011
PMID: 21490558
A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment.
Endesfelder U, Malkusch S, Fricke F, Heilemann M., Histochem. Cell Biol. 141(6), 2014
PMID: 24522395
Optical nanoscopy: from acquisition to analysis.
Gould TJ, Hess ST, Bewersdorf J., Annu Rev Biomed Eng 14(), 2012
PMID: 22559319
1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity.
Greiner JF, Muller J, Zeuner MT, Hauser S, Seidel T, Klenke C, Grunwald LM, Schomann T, Widera D, Sudhoff H, Kaltschmidt B, Kaltschmidt C., Biochim. Biophys. Acta 1833(12), 2013
PMID: 23872422
The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor.
Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P., Cell 83(5), 1995
PMID: 8521496
TNF-α influences the lateral dynamics of TNF receptor I in living cells.
Heidbreder M, Zander C, Malkusch S, Widera D, Kaltschmidt B, Kaltschmidt C, Nair D, Choquet D, Sibarita JB, Heilemann M., Biochim. Biophys. Acta 1823(10), 2012
PMID: 22749881
The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability.
Henkler F, Behrle E, Dennehy KM, Wicovsky A, Peters N, Warnke C, Pfizenmaier K, Wajant H., J. Cell Biol. 168(7), 2005
PMID: 15795317
Two different cell types have different major receptors for human tumor necrosis factor (TNF alpha).
Hohmann HP, Remy R, Brockhaus M, van Loon AP., J. Biol. Chem. 264(25), 1989
PMID: 2549042
Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5.
Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M, Kelley RF, Ashkenazi A, de Vos AM., Mol. Cell 4(4), 1999
PMID: 10549288
Molecular interaction studies using microscale thermophoresis.
Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S., Assay Drug Dev Technol 9(4), 2011
PMID: 21812660

AUTHOR UNKNOWN, 0
Control of receptor-induced signaling complex formation by the kinetics of ligand/receptor interaction.
Krippner-Heidenreich A, Tubing F, Bryde S, Willi S, Zimmermann G, Scheurich P., J. Biol. Chem. 277(46), 2002
PMID: 12215450
Cellular receptor for 125I-labeled tumor necrosis factor: specific binding, affinity labeling, and relationship to sensitivity.
Kull FC Jr, Jacobs S, Cuatrecasas P., Proc. Natl. Acad. Sci. U.S.A. 82(17), 1985
PMID: 2994048
Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast.
Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, Klenerman D, Carr AM, Sauer M, Allshire RC, Heilemann M, Laue ED., Open Biol 2(7), 2012
PMID: 22870388
Homomeric and heteromeric interactions of the extracellular domains of death receptors and death decoy receptors.
Lee HW, Lee SH, Lee HW, Ryu YW, Kwon MH, Kim YS., Biochem. Biophys. Res. Commun. 330(4), 2005
PMID: 15823571
Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM).
Lee SH, Shin JY, Lee A, Bustamante C., Proc. Natl. Acad. Sci. U.S.A. 109(43), 2012
PMID: 23045631
TNF ligands and receptors--a matter of life and death.
MacEwan DJ., Br. J. Pharmacol. 135(4), 2002
PMID: 11861313
Coordinate-based colocalization analysis of single-molecule localization microscopy data.
Malkusch S, Endesfelder U, Mondry J, Gelleri M, Verveer PJ, Heilemann M., Histochem. Cell Biol. 137(1), 2011
PMID: 22086768
Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution.
Malkusch S, Muranyi W, Muller B, Krausslich HG, Heilemann M., Histochem. Cell Biol. 139(1), 2012
PMID: 22910843
Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor.
Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR., J. Biol. Chem. 270(22), 1995
PMID: 7768931
Multi-parameter analysis of the kinetics of NF-kappaB signalling and transcription in single living cells.
Nelson G, Paraoan L, Spiller DG, Wilde GJ, Browne MA, Djali PK, Unitt JF, Sullivan E, Floettmann E, White MR., J. Cell. Sci. 115(Pt 6), 2002
PMID: 11884514
Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines.
Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M., Mol. Syst. Biol. 9(), 2013
PMID: 23511206
Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling.
Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL., J. Biol. Chem. 283(34), 2008
PMID: 18544535
Evolutionary biology. Pelvic problems for mammals.
Presley R., Nature 389(6650), 1997
PMID: 9333229
Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory.
Puchner EM, Walter JM, Kasper R, Huang B, Lim WA., Proc. Natl. Acad. Sci. U.S.A. 110(40), 2013
PMID: 24043832
Antagonistic TNF receptor one-specific antibody (ATROSAB): receptor binding and in vitro bioactivity.
Richter F, Liebig T, Guenzi E, Herrmann A, Scheurich P, Pfizenmaier K, Kontermann RE., PLoS ONE 8(8), 2013
PMID: 23977237
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772
Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles.
Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D, Schutze S., Immunity 21(3), 2004
PMID: 15357952
Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis.
Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J., Nat. Methods 8(11), 2011
PMID: 21926998
SPOTS: signaling protein oligomeric transduction structures are early mediators of death receptor-induced apoptosis at the plasma membrane.
Siegel RM, Muppidi JR, Sarker M, Lobito A, Jen M, Martin D, Straus SE, Lenardo MJ., J. Cell Biol. 167(4), 2004
PMID: 15557123
Efficient modeling, simulation and coarse-graining of biological complexity with NFsim.
Sneddon MW, Faeder JR, Emonet T., Nat. Methods 8(2), 2010
PMID: 21186362
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor 5 networks that are highly organized.
Valley CC, Lewis AK, Mudaliar DJ, Perlmutter JD, Braun AR, Karim CB, Thomas DD, Brody JR, Sachs JN., J. Biol. Chem. 287(25), 2012
PMID: 22496450
Molecular mechanisms of necroptosis: an ordered cellular explosion.
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G., Nat. Rev. Mol. Cell Biol. 11(10), 2010
PMID: 20823910
TNFR1-induced activation of the classical NF-κB pathway.
Wajant H, Scheurich P., FEBS J. 278(6), 2011
PMID: 21232017
Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling.
Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B., BMC Neurosci 7(), 2006
PMID: 16987412
A minimal mathematical model for the initial molecular interactions of death receptor signalling.
Winkel C, Neumann S, Surulescu C, Scheurich P., Math Biosci Eng 9(3), 2012
PMID: 22881031
rapidSTORM: accurate, fast open-source software for localization microscopy.
Wolter S, Loschberger A, Holm T, Aufmkolk S, Dabauvalle MC, van de Linde S, Sauer M., Nat. Methods 9(11), 2012
PMID: 23132113
A soluble 17 kDa tumour necrosis factor (TNF) mutein, TNF-SAM2, with membrane-bound TNF-like biological characteristics.
Yoshida A, Kohchi C, Inagawa H, Nishizawa T, Hori H, Soma G., Anticancer Res. 26(6A), 2006
PMID: 17195449

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24519400
PubMed | Europe PMC

Suchen in

Google Scholar