Motor patterns during active electrosensory acquisition

Hofmann V, Geurten B, Sanguinetti-Scheck JI, Gomez-Senna L, Engelmann J (2014)
Frontiers in Behavioral Neuroscience 8: 186.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Hofmann, VolkerUniBi; Geurten, BartUniBi; Sanguinetti-Scheck, Juan Ignacio; Gomez-Senna, Leonel; Engelmann, JacobUniBi
Abstract / Bemerkung
Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions. The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing.
behavior; sensory flow; motor patterns; electrolocation; sensorimotor interaction; quantitative behavioral analysis; electric fish
Frontiers in Behavioral Neuroscience
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Hofmann V, Geurten B, Sanguinetti-Scheck JI, Gomez-Senna L, Engelmann J. Motor patterns during active electrosensory acquisition. Frontiers in Behavioral Neuroscience. 2014;8:186.
Hofmann, V., Geurten, B., Sanguinetti-Scheck, J. I., Gomez-Senna, L., & Engelmann, J. (2014). Motor patterns during active electrosensory acquisition. Frontiers in Behavioral Neuroscience, 8, 186. doi:10.3389/fnbeh.2014.00186
Hofmann, V., Geurten, B., Sanguinetti-Scheck, J. I., Gomez-Senna, L., and Engelmann, J. (2014). Motor patterns during active electrosensory acquisition. Frontiers in Behavioral Neuroscience 8, 186.
Hofmann, V., et al., 2014. Motor patterns during active electrosensory acquisition. Frontiers in Behavioral Neuroscience, 8, p 186.
V. Hofmann, et al., “Motor patterns during active electrosensory acquisition”, Frontiers in Behavioral Neuroscience, vol. 8, 2014, pp. 186.
Hofmann, V., Geurten, B., Sanguinetti-Scheck, J.I., Gomez-Senna, L., Engelmann, J.: Motor patterns during active electrosensory acquisition. Frontiers in Behavioral Neuroscience. 8, 186 (2014).
Hofmann, Volker, Geurten, Bart, Sanguinetti-Scheck, Juan Ignacio, Gomez-Senna, Leonel, and Engelmann, Jacob. “Motor patterns during active electrosensory acquisition”. Frontiers in Behavioral Neuroscience 8 (2014): 186.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Generalization of learned responses in the mormyrid electrosensory lobe.
Dempsey C, Abbott LF, Sawtell NB., Elife 8(), 2019
PMID: 30860480
Sensory Cues Modulate Smooth Pursuit and Active Sensing Movements.
Uyanik I, Stamper SA, Cowan NJ, Fortune ES., Front Behav Neurosci 13(), 2019
PMID: 31024269
Motion parallax in electric sensing.
Pedraja F, Hofmann V, Lucas KM, Young C, Engelmann J, Lewis JE., Proc Natl Acad Sci U S A 115(3), 2018
PMID: 29295924
Sensory Flow as a Basis for a Novel Distance Cue in Freely Behaving Electric Fish.
Hofmann V, Sanguinetti-Scheck JI, Gómez-Sena L, Engelmann J., J Neurosci 37(2), 2017
PMID: 28077710
Saccadic Movement Strategy in Common Cuttlefish (Sepia officinalis).
Helmer D, Geurten BR, Dehnhardt G, Hanke FD., Front Physiol 7(), 2016
PMID: 28105017
Saccadic body turns in walking Drosophila.
Geurten BR, Jähde P, Corthals K, Göpfert MC., Front Behav Neurosci 8(), 2014
PMID: 25386124

75 References

Daten bereitgestellt von Europe PubMed Central.

K-means++: the advantages of careful seeding
Arthur D., Vassilvitskii S.., 2007
Spatial acuity and prey detection in weakly electric fish.
Babineau D, Lewis JE, Longtin A., PLoS Comput. Biol. 3(3), 2007
PMID: 17335346
Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J. Comp. Neurol. 511(3), 2008
PMID: 18803238
Active perception
Bajcsy R.., 1988
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Stereotyped temporal patterns in electrical communication
Carlson B., Hopkins C.., 2004
Task- and subject-related differences in sensorimotor behavior during active touch.
Carvell GE, Simons DJ., Somatosens Mot Res 12(1), 1995
PMID: 7571939
Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types.
Castello ME, Aguilera PA, Trujillo-Cenoz O, Caputi AA., J. Exp. Biol. 203(Pt 21), 2000
PMID: 11023848
Modeling signal and background components of electrosensory scenes.
Chen L, House JL, Krahe R, Nelson ME., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(4), 2004
PMID: 15800793
Spectral sensitivity of the weakly discharging electric fish Gnathonemus petersii using its electric organ discharges as the response measure
Ciali S., Gordon J., Moller P.., 1997
Speed-invariant encoding of looming object distance requires power law spike rate adaptation.
Clarke SE, Naud R, Longtin A, Maler L., Proc. Natl. Acad. Sci. U.S.A. 110(33), 2013
PMID: 23898185
Visual spatial memory in a hoverfly
Collett T., Land M.., 1975
The critical role of locomotion mechanics in decoding sensory systems.
Cowan NJ, Fortune ES., J. Neurosci. 27(5), 2007
PMID: 17267567
The Mauthner-initiated startle response in teleost fish.
Eaton RC, Bombardieri RA, Meyer DL., J. Exp. Biol. 66(1), 1977
PMID: 870603
Hidden Markov models.
Eddy SR., Curr. Opin. Struct. Biol. 6(3), 1996
PMID: 8804822
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Electric imaging through active electrolocation: implication for the analysis of complex scenes.
Engelmann J, Bacelo J, Metzen M, Pusch R, Bouton B, Migliaro A, Caputi A, Budelli R, Grant K, von der Emde G., Biol Cybern 98(6), 2008
PMID: 18491164
Mind the gap: the minimal detectable separation distance between two objects during active electrolocation.
Fechler K, Holtkamp D, Neusel G, Sanguinetti-Scheck JI, Budelli R, von der Emde G., J. Fish Biol. 81(7), 2012
PMID: 23252738
Collision detection as a model for sensory-motor integration.
Fotowat H, Gabbiani F., Annu. Rev. Neurosci. 34(), 2011
PMID: 21391815
Wireless recording and computational modeling of natural electrosensory input in freely swimming electric fish
Fotowat H., Harrison R., Krahe R.., 2012
Anticipatory activity of motor cortex in relation to rhythmic whisking.
Friedman WA, Jones LM, Cramer NP, Kwegyir-Afful EE, Zeigler HP, Keller A., J. Neurophysiol. 95(2), 2005
PMID: 16251259
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Fish perform spatial pattern recognition and abstraction by exclusive use of active electrolocation.
Graff C, Kaminski G, Gresty M, Ohlmann T., Curr. Biol. 14(9), 2004
PMID: 15120076
Active touch sensing: finger tips, whiskers, and antennae.
Grant RA, Itskov PM, Towal RB, Prescott TJ., Front Behav Neurosci 8(), 2014
PMID: 24600364
Behavioral evidence of a latency code for stimulus intensity in mormyrid electric fish
Hall C., Bell C., Zelick R.., 1995
Zur Funktion des elektrischen Organs vonGnathonemus petersii (GTHR. 1862) (Mormyriformes, Teleostei)
Harder W., Schief A., Uhlemann H.., 1964
Theoretical and experimental approaches to spatial aspects of electrolocation
Heiligenberg W.., 1975
From static electric images to electric flow: towards dynamic perceptual cues in active electroreception.
Hofmann V, Sanguinetti-Scheck JI, Gomez-Sena L, Engelmann J., J. Physiol. Paris 107(1-2), 2012
PMID: 22781955
Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.
Hofmann V, Sanguinetti-Scheck JI, Kunzel S, Geurten B, Gomez-Sena L, Engelmann J., J. Exp. Biol. 216(Pt 13), 2013
PMID: 23761474
Distribution, density and morphology of electroreceptor organs in mormyrid weakly electric fish: anatomical investigations of a receptor mosaic
Hollmann M., Engelmann J., von G., Hollmann M.., 2008
Neural maps in the electrosensory system of weakly electric fish.
Krahe R, Maler L., Curr. Opin. Neurobiol. 24(1), 2013
PMID: 24492073
An introduction to hidden Markov models for biological sequences
Krogh A.., 1998
Dim light vision--morphological and functional adaptations of the eye of the mormyrid fish, Gnathonemus petersii.
Landsberger M, von der Emde G, Haverkate D, Schuster S, Gentsch J, Ulbricht E, Reichenbach A, Makarov F, Wagner HJ., J. Physiol. Paris 102(4-6), 2008
PMID: 18992335
On the function and evolution of electric organs in fish
Lissmann H.., 1957
Sensory neurophysiology: motion vision during motor action.
Longden KD, Krapp HG., Curr. Biol. 21(17), 2011
PMID: 21920293
The mode of operation of the electric receptors in Gymnarchus niloticus
Machin K., Lissmann H.., 1958
Energy-information trade-offs between movement and sensing.
MacIver MA, Patankar NA, Shirgaonkar AA., PLoS Comput. Biol. 6(5), 2010
PMID: 20463870
Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity.
MacIver MA, Sharabash NM, Nelson ME., J. Exp. Biol. 204(Pt 3), 2001
PMID: 11171305
Notes on ethology and ecology of the Swashi River mormyrids (Lake Kainji, Nigeria)
Moller P., Serrier J., Belbenoit P., Push S.., 1979
Sensory acquisition in active sensing systems.
Nelson ME, MacIver MA., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645885
The "novelty response" in an electric fish: response properties and habituation.
Post N, von der Emde G., Physiol. Behav. 68(1-2), 1999
PMID: 10627070
Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation.
Pusch R, von der Emde G, Hollmann M, Bacelo J, Nobel S, Grant K, Engelmann J., J. Exp. Biol. 211(Pt 6), 2008
PMID: 18310118

Rother D.., 2003
Electric images of two low resistance objects in weakly electric fish.
Rother D, Migliaro A, Canetti R, Gomez L, Caputi A, Budelli R., BioSystems 71(1-2), 2003
PMID: 14568217
From static electric images to electric flow: towards dynamic perceptual cues in active electroreception.
Hofmann V, Sanguinetti-Scheck JI, Gomez-Sena L, Engelmann J., J. Physiol. Paris 107(1-2), 2012
PMID: 22781955
Effects of sensing behavior on a latency code.
Sawtell NB, Williams A, Roberts PD, von der Emde G, Bell CC., J. Neurosci. 26(32), 2006
PMID: 16899717
Dynamics of Active Sensing and perceptual selection.
Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P., Curr. Opin. Neurobiol. 20(2), 2010
PMID: 20307966
Optimal planning for information acquisition
Silverman Y., Miller L., MacIver M., Murphey T.., 2013
Electrolocation based on tail-bending movements in weakly electric fish.
Sim M, Kim D., J. Exp. Biol. 214(Pt 14), 2011
PMID: 21697437
Electrolocation of multiple objects based on temporal sweep motions
Sim M., Kim D.., 2012
Omnidirectional sensory and motor volumes in electric fish.
Snyder JB, Nelson ME, Burdick JW, Maciver MA., PLoS Biol. 5(11), 2007
PMID: 18001151

Solberg J.., 2009
Range perception through apparent image speed in freely flying honeybees.
Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW., Vis. Neurosci. 6(5), 1991
PMID: 2069903
Active sensing via movement shapes spatiotemporal patterns of sensory feedback.
Stamper SA, Roth E, Cowan NJ, Fortune ES., J. Exp. Biol. 215(Pt 9), 2012
PMID: 22496294
Motor programmes and electroreception in Mormyrid fish
Toerring M., Belbenoit P.., 1979
What the bat's voice tells the bat's brain.
Ulanovsky N, Moss CF., Proc. Natl. Acad. Sci. U.S.A. 105(25), 2008
PMID: 18562301
Electrolocation of capacitive objects in four species of pulse-type weakly electric fish. II. Electric signalling behavior
Von G.., 1992
3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish.
von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C., Front Behav Neurosci 4(), 2010
PMID: 20577635
Active Electrolocation
Von G., Engelmann J.., 2011
Imaging of objects through active electrolocation in Gnathonemus petersii.
von der Emde G, Schwarz S., J. Physiol. Paris 96(5-6), 2002
PMID: 14692491
Active vision in insects: an analysis of object-directed zig-zag flights in wasps (Odynerus spinipes, Eumenidae)
Voss R., Zeil J.., 1998
Markov Models
Wallisch P., Lusignan M., Benayoun M., Baker T., Dickey A., Hatsopoulos N.., 2009
Active control of acoustic field-of-view in a biosonar system.
Yovel Y, Falk B, Moss CF, Ulanovsky N., PLoS Biol. 9(9), 2011
PMID: 21931535
Coding conspecific identity and motion in the electric sense.
Yu N, Hupe G, Garfinkle C, Lewis JE, Longtin A., PLoS Comput. Biol. 8(7), 2012
PMID: 22807662


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 24904337
PubMed | Europe PMC

Suchen in

Google Scholar