Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions

Ullrich T, Kern R, Egelhaaf M (2014)
Frontiers in Integrative Neuroscience 8: 34.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
The responses of visual interneurons of flies involved in the processing of motion information do not only depend on the velocity, but also on other stimulus parameters, such as the contrast and the spatial frequency content of the stimulus pattern. These dependencies have been known for long, but it is still an open question how they affect the neurons’ performance in extracting information about the structure of the environment under the specific dynamical conditions of natural flight. Free-flight of blowflies is characterized by sequences of phases of translational movements lasting for just 30–100 ms interspersed with even shorter and extremely rapid saccade-like rotational shifts in flight and gaze direction. Previous studies already analyzed how nearby objects, leading to relative motion on the retina with respect to a more distant background, influenced the response of a class of fly motion sensitive visual interneurons, the horizontal system (HS) cells. In the present study, we focused on objects that differed from their background by discontinuities either in their brightness contrast or in their spatial frequency content. We found strong object-induced effects on the membrane potential even during the short intersaccadic intervals, if the background contrast was small and the object contrast sufficiently high. The object evoked similar response increments provided that it contained higher spatial frequencies than the background, but not under reversed conditions. This asymmetry in the response behavior is partly a consequence of the depolarization level induced by the background. Thus, our results suggest that, under the specific dynamical conditions of natural flight, i.e., on a very short timescale, the responses of HS cells represent object information depending on the polarity of the difference between object and background contrast and spatial frequency content.
Erscheinungsjahr
2014
Zeitschriftentitel
Frontiers in Integrative Neuroscience
Band
8
Seite(n)
34
ISSN
1662-5145
eISSN
1662-5145
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2675090

Zitieren

Ullrich T, Kern R, Egelhaaf M. Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions. Frontiers in Integrative Neuroscience. 2014;8:34.
Ullrich, T., Kern, R., & Egelhaaf, M. (2014). Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions. Frontiers in Integrative Neuroscience, 8, 34. doi:10.3389/fnint.2014.00034
Ullrich, Thomas, Kern, Roland, and Egelhaaf, Martin. 2014. “Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions”. Frontiers in Integrative Neuroscience 8: 34.
Ullrich, T., Kern, R., and Egelhaaf, M. (2014). Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions. Frontiers in Integrative Neuroscience 8, 34.
Ullrich, T., Kern, R., & Egelhaaf, M., 2014. Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions. Frontiers in Integrative Neuroscience, 8, p 34.
T. Ullrich, R. Kern, and M. Egelhaaf, “Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions”, Frontiers in Integrative Neuroscience, vol. 8, 2014, pp. 34.
Ullrich, T., Kern, R., Egelhaaf, M.: Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions. Frontiers in Integrative Neuroscience. 8, 34 (2014).
Ullrich, Thomas, Kern, Roland, and Egelhaaf, Martin. “Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions”. Frontiers in Integrative Neuroscience 8 (2014): 34.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:23Z
MD5 Prüfsumme
aa737b128f372cabc131d5804e547388


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

64 References

Daten bereitgestellt von Europe PubMed Central.

Spatial frequency, phase, and the contrast of natural images.
Bex PJ, Makous W., J Opt Soc Am A Opt Image Sci Vis 19(6), 2002
PMID: 12049346
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191(12), 2005
PMID: 16133502
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Detecting visual motion: theory and models.
Borst A., Egelhaaf M.., 1993
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Visual spatial memory in a hoverfly.
Collett T., Land M.., 1975
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969
The contrast sensitivity of fly movement-detecting neurons.
Dvorak D, Srinivasan MV, French AS., Vision Res. 20(5), 1980
PMID: 7414974
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I: behavioural constraints imposed on the neuronal network and the role of the optomoter system.
Egelhaaf M.., 1985
“The neural computation of visual motion information,” in
Egelhaaf M.., 2006
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Central gating of fly optomotor response.
Haag J, Wertz A, Borst A., Proc. Natl. Acad. Sci. U.S.A. 107(46), 2010
PMID: 21045125
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals.
Hausen K.., 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics.
Hausen K.., 1982
“The lobula-complex of the fly: structure, function and significance in visual behaviour,” in
Hausen K.., 1984
“Neural mechanisms of visual course control in insects,” in
Hausen K., Egelhaaf M.., 1989
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J. Neurophysiol. 90(3), 2003
PMID: 12736239
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
“Neuronal matched filters for optic flow processing in flying insects,” in
Krapp H.., 2000
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791
Head movement of flies during visually guided flight.
Land M.., 1973
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency.
Maddess T., Laughlin S.., 1985
The free-flight response of Drosophila to motion of the visual environment.
Mronz M, Lehmann FO., J. Exp. Biol. 211(Pt 13), 2008
PMID: 18552291
Salience from feature contrast: additivity across dimensions.
Nothdurft H., Vision Res. 40(10-12), 2000
PMID: 10788635
Local and global responses of insect motion detectors to the spatial structure of natural scenes.
O’Carroll D., Barnett P., Nordström K.., 2011
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordstrom K., Front Neural Circuits 6(), 2012
PMID: 23087617
Inference and computation with population codes.
Pouget A, Dayan P, Zemel RS., Annu. Rev. Neurosci. 26(), 2003
PMID: 12704222
Figure-ground discrimination by relative movement in the visual system of the fly.
Reichardt W., Poggio T., Hausen K.., 1983
The statistics of natural images.
Ruderman D.., 1994
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Dendritic integration and its role in computing image velocity.
Single S, Borst A., Science 281(5384), 1998
PMID: 9743497
The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster.
van Breugel F, Dickinson MH., J. Exp. Biol. 215(Pt 11), 2012
PMID: 22573757
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Discrimination of features in natural scenes by a dragonfly neuron.
Wiederman SD, O'Carroll DC., J. Neurosci. 31(19), 2011
PMID: 21562276
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 24808836
PubMed | Europe PMC

Suchen in

Google Scholar