A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels

Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Büchel C (2014)
FEBS Journal 281(9): 2299-2311.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Juhas, Matthias; von Zadow, Andrea; Spexard, MeikeUniBi; Schmidt, Matthias; Kottke, TilmanUniBi ; Büchel, Claudia
Abstract / Bemerkung
Diatoms possess several genes for proteins of the cryptochrome/photolyase family. A typical sequence for a plant cryptochrome was not found in our analysis of the Phaeodactylumtricornutum genome, but one protein grouped with higher plant and green algal cryptochromes. This protein, CryP, binds FAD and 5,10-methenyltetrahydrofolate, according to our spectroscopic studies on heterologously expressed protein. 5,10-Methenyltetrahydrofolate binding is a feature common to both cyclobutane pyrimidine dimer photolyases and DASH cryptochromes. In recombinant CryP, however, the FAD chromophore was present in its neutral radical state and had a red-shifted absorption maximum at 637nm, which is more characteristic for a DASH cryptochrome than a cyclobutane pyrimidine dimer photolyase. Upon illumination with blue light, the fully reduced state of FAD was formed in the presence of reductant. Expression of CryP was silenced by antisense approaches, and the resulting cell lines showed increased levels of proteins of light-harvesting complexes, the Lhcf proteins, invivo. In contrast, the levels of proteins active in light protection, the Lhcx proteins, were reduced. Thus, CryP cannot be directly grouped with known members of the cryptochrome/photolyase family. Of all P.tricornutum proteins, it is the most similar in sequence to a plant cryptochrome, and is involved in the regulation of light-harvesting protein expression, but shows spectroscopic features and a chromophore composition that are most typical of a DASH cryptochrome.
Stichworte
Lhcf; Lhcx; FAD; algae; 10-methenyltetrahydrofolate (MTHF); 5
Erscheinungsjahr
2014
Zeitschriftentitel
FEBS Journal
Band
281
Ausgabe
9
Seite(n)
2299-2311
ISSN
1742-464X
Page URI
https://pub.uni-bielefeld.de/record/2674719

Zitieren

Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Büchel C. A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels. FEBS Journal. 2014;281(9):2299-2311.
Juhas, M., von Zadow, A., Spexard, M., Schmidt, M., Kottke, T., & Büchel, C. (2014). A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels. FEBS Journal, 281(9), 2299-2311. doi:10.1111/febs.12782
Juhas, Matthias, von Zadow, Andrea, Spexard, Meike, Schmidt, Matthias, Kottke, Tilman, and Büchel, Claudia. 2014. “A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels”. FEBS Journal 281 (9): 2299-2311.
Juhas, M., von Zadow, A., Spexard, M., Schmidt, M., Kottke, T., and Büchel, C. (2014). A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels. FEBS Journal 281, 2299-2311.
Juhas, M., et al., 2014. A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels. FEBS Journal, 281(9), p 2299-2311.
M. Juhas, et al., “A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels”, FEBS Journal, vol. 281, 2014, pp. 2299-2311.
Juhas, M., von Zadow, A., Spexard, M., Schmidt, M., Kottke, T., Büchel, C.: A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels. FEBS Journal. 281, 2299-2311 (2014).
Juhas, Matthias, von Zadow, Andrea, Spexard, Meike, Schmidt, Matthias, Kottke, Tilman, and Büchel, Claudia. “A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels”. FEBS Journal 281.9 (2014): 2299-2311.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Delocalized hole transport coupled to sub-ns tryptophanyl deprotonation promotes photoreduction of class II photolyases.
Lacombat F, Espagne A, Dozova N, Plaza P, Ignatz E, Kiontke S, Essen LO., Phys Chem Chem Phys 20(39), 2018
PMID: 30272080
Light-harvesting protein Lhcx3 is essential for high light acclimation of Phaeodactylum tricornutum.
Hao TB, Jiang T, Dong HP, Ou LJ, He X, Yang YF., AMB Express 8(1), 2018
PMID: 30353255
The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.
Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG, Falciatore A, Lavaud J., New Phytol 214(1), 2017
PMID: 27870063
A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle.
Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T, Mittag M., Plant Physiol 174(1), 2017
PMID: 28360233
Ultrafast flavin photoreduction in an oxidized animal (6-4) photolyase through an unconventional tryptophan tetrad.
Martin R, Lacombat F, Espagne A, Dozova N, Plaza P, Yamamoto J, Müller P, Brettel K, de la Lande A., Phys Chem Chem Phys 19(36), 2017
PMID: 28890968
The Influence of a Cryptochrome on the Gene Expression Profile in the Diatom Phaeodactylum tricornutum under Blue Light and in Darkness.
König S, Eisenhut M, Bräutigam A, Kurz S, Weber APM, Büchel C., Plant Cell Physiol 58(11), 2017
PMID: 29016997
Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum.
Eilers U, Dietzel L, Breitenbach J, Büchel C, Sandmann G., J Plant Physiol 192(), 2016
PMID: 26851888
Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum.
Taddei L, Stella GR, Rogato A, Bailleul B, Fortunato AE, Annunziata R, Sanges R, Thaler M, Lepetit B, Lavaud J, Jaubert M, Finazzi G, Bouly JP, Falciatore A., J Exp Bot 67(13), 2016
PMID: 27225826
Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms.
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A., J Plant Physiol 172(), 2015
PMID: 25087009
The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways.
Scheerer P, Zhang F, Kalms J, von Stetten D, Krauß N, Oberpichler I, Lamparter T., J Biol Chem 290(18), 2015
PMID: 25784552
System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.
Valle KC, Nymark M, Aamot I, Hancke K, Winge P, Andresen K, Johnsen G, Brembu T, Bones AM., PLoS One 9(12), 2014
PMID: 25470731

67 References

Daten bereitgestellt von Europe PubMed Central.

The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
Selby CP, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 103(47), 2006
PMID: 17062752
Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome.
Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO., Proc. Natl. Acad. Sci. U.S.A. 105(52), 2008
PMID: 19074258
Identification of a new cryptochrome class. Structure, function, and evolution.
Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer JA, Getzoff ED., Mol. Cell 11(1), 2003
PMID: 12535521
Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana.
Song SH, Dick B, Penzkofer A, Pokorny R, Batschauer A, Essen LO., J. Photochem. Photobiol. B, Biol. 85(1), 2006
PMID: 16725342
Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity.
Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A., EMBO Rep. 10(6), 2009
PMID: 19424294
An ancient light-harvesting protein is critical for the regulation of algal photosynthesis.
Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK., Nature 462(7272), 2009
PMID: 19940928
An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light.
Bailleul B, Rogato A, de Martino A, Coesel S, Cardol P, Bowler C, Falciatore A, Finazzi G., Proc. Natl. Acad. Sci. U.S.A. 107(42), 2010
PMID: 20921421
Exploring the molecular basis of responses to light in marine diatoms.
Depauw FA, Rogato A, Ribera d'Alcala M, Falciatore A., J. Exp. Bot. 63(4), 2012
PMID: 22328904
A new class of DNA photolyases present in various organisms including aplacental mammals.
Yasui A, Eker AP, Yasuhira S, Yajima H, Kobayashi T, Takao M, Oikawa A., EMBO J. 13(24), 1994
PMID: 7813451
Light-induced activation of class II cyclobutane pyrimidine dimer photolyases.
Okafuji A, Biskup T, Hitomi K, Getzoff ED, Kaiser G, Batschauer A, Bacher A, Hidema J, Teranishi M, Yamamoto K, Schleicher E, Weber S., DNA Repair (Amst.) 9(5), 2010
PMID: 20227927
A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides.
Hendrischk AK, Fruhwirth SW, Moldt J, Pokorny R, Metz S, Kaiser G, Jager A, Batschauer A, Klug G., Mol. Microbiol. 74(4), 2009
PMID: 19878455
Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore.
Zhang F, Scheerer P, Oberpichler I, Lamparter T, Krauß N., Proc. Natl. Acad. Sci. U.S.A. 110(18), 2013
PMID: 23589886
CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new cofactors.
Geisselbrecht Y, Fruhwirth S, Schroeder C, Pierik AJ, Klug G, Essen LO., EMBO Rep. 13(3), 2012
PMID: 22290493
Fluorescence behaviour of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8
Tyagi, Chem Phys 361(), 2009
Ultrafast dynamics of flavins in five redox states.
Kao YT, Saxena C, He TF, Guo L, Wang L, Sancar A, Zhong D., J. Am. Chem. Soc. 130(39), 2008
PMID: 18767842
Photoreduction of the folate cofactor in members of the photolyase family.
Moldt J, Pokorny R, Orth C, Linne U, Geisselbrecht Y, Marahiel MA, Essen LO, Batschauer A., J. Biol. Chem. 284(32), 2009
PMID: 19531478
Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum.
Gundermann K, Schmidt M, Weisheit W, Mittag M, Buchel C., Biochim. Biophys. Acta 1827(3), 2012
PMID: 23142526
Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes.
Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Sanchez F, Plaza P, Martin M, Falciatore A, Todo T, Bouget FY, Bowler C., Plant Cell Environ. 33(10), 2010
PMID: 20444223
Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.
Brazard J, Usman A, Lacombat F, Ley C, Martin MM, Plaza P, Mony L, Heijde M, Zabulon G, Bowler C., J. Am. Chem. Soc. 132(13), 2010
PMID: 20222748
Photoantenna in two cryptochrome-photolyase proteins from O. tauri: presence, nature and ultrafast photoinduced dynamics
Brazard, J Photochem Photobiol A 234(), 2012
Ultrafast dynamics of resonance energy transfer in cryptochrome.
Saxena C, Wang H, Kavakli IH, Sancar A, Zhong D., J. Am. Chem. Soc. 127(22), 2005
PMID: 15926801
Purification and characterization of a type III photolyase from Caulobacter crescentus.
Ozturk N, Kao YT, Selby CP, Kavakli IH, Partch CL, Zhong D, Sancar A., Biochemistry 47(39), 2008
PMID: 18771290
A photolyase-like protein from Agrobacterium tumefaciens with an iron-sulfur cluster.
Oberpichler I, Pierik AJ, Wesslowski J, Pokorny R, Rosen R, Vugman M, Zhang F, Neubauer O, Ron EZ, Batschauer A, Lamparter T., PLoS ONE 6(10), 2011
PMID: 22066008
Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins.
Immeln D, Pokorny R, Herman E, Moldt J, Batschauer A, Kottke T., J Phys Chem B 114(51), 2010
PMID: 21128641
Direkte Detektion eines lichtinduzierten Radikalpaars in einem Cryptochrom-Blaulichtrezeptor
Biskup, Angew Chem 121(), 2009
Spectroscopic and thermodynamic comparisons of Escherichia coli DNA photolyase and Vibrio cholerae cryptochrome 1.
Sokolowsky K, Newton M, Lucero C, Wertheim B, Freedman J, Cortazar F, Czochor J, Schelvis JP, Gindt YM., J Phys Chem B 114(20), 2010
PMID: 20438097
Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana.
Pokorny R, Klar T, Essen LO, Batschauer A., Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61(Pt 10), 2005
PMID: 16511200
Involvement of electron transfer in the photoreaction of zebrafish Cryptochrome-DASH.
Zikihara K, Ishikawa T, Todo T, Tokutomi S., Photochem. Photobiol. 84(4), 2008
PMID: 18494763
Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH.
Damiani MJ, Yalloway GN, Lu J, McLeod NR, O'Neill MA., Biochemistry 48(48), 2009
PMID: 19888752
Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
Kottke T, Batschauer A, Ahmad M, Heberle J., Biochemistry 45(8), 2006
PMID: 16489739
Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27.
Ueda T, Kato A, Kuramitsu S, Terasawa H, Shimada I., J. Biol. Chem. 280(43), 2005
PMID: 16118222
Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans.
Aubert C, Mathis P, Eker AP, Brettel K., Proc. Natl. Acad. Sci. U.S.A. 96(10), 1999
PMID: 10318899
An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum.
Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM., PLoS ONE 4(11), 2009
PMID: 19888450
Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum.
Nymark M, Valle KC, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM, Brembu T., PLoS ONE 8(3), 2013
PMID: 23520530
Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum.
Lepetit B, Volke D, Szabo M, Hoffmann R, Garab G, Wilhelm C, Goss R., Biochemistry 46(34), 2007
PMID: 17672483
Changes in the photosynthetic apparatus of diatoms in response to low and high light intensities.
Janssen M, Bathke L, Marquardt J, Krumbein WE, Rhiel E., Int. Microbiol. 4(1), 2001
PMID: 11770817
Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum.
Schellenberger Costa B, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C., J. Exp. Bot. 64(2), 2012
PMID: 23183259
Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum.
Schellenberger Costa B, Sachse M, Jungandreas A, Bartulos CR, Gruber A, Jakob T, Kroth PG, Wilhelm C., PLoS ONE 8(9), 2013
PMID: 24073211
A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
Beel B, Prager K, Spexard M, Sasso S, Weiss D, Muller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M., Plant Cell 24(7), 2012
PMID: 22773746
The Phaeodactylum genome reveals the evolutionary history of diatom genomes.
Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV., Nature 456(7219), 2008
PMID: 18923393
The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to?
Mittag M, Kiaulehn S, Johnson CH., Plant Physiol. 137(2), 2005
PMID: 15710681
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum.
Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore A, Bowler C., Gene 406(1-2), 2007
PMID: 17658702
Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes
Zaslavskaia, J Phycol 36(), 2000
Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins.
Joshi-Deo J, Schmidt M, Gruber A, Weisheit W, Mittag M, Kroth PG, Buchel C., J. Exp. Bot. 61(11), 2010
PMID: 20478968
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24628952
PubMed | Europe PMC

Suchen in

Google Scholar