Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes

Dubos C, Kelemen Z, Sebastian A, Bülow L, Huep G, Xu W, Grain D, Salsac F, Brousse C, Lepiniec L, Weisshaar B, et al. (2014)
BMC genomics 15(1): 317.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Dubos, Christian; Kelemen, Zsolt; Sebastian, Alvaro; Bülow, Lorenz; Huep, GunnarUniBi; Xu, Wenjia; Grain, Damaris; Salsac, Fabien; Brousse, Cecile; Lepiniec, Loïc; Weisshaar, BerndUniBi ; Contreras-Moreira, Bruno
Abstract / Bemerkung
BACKGROUND: Using motif detection programs it is fairly straightforward to identify conserved cis-sequences in promoters of co-regulated genes. In contrast, the identification of the transcription factors (TFs) interacting with these cis-sequences is much more elaborate. To facilitate this, we explore the possibility of using several bioinformatic and experimental approaches for TF identification. This starts with the selection of co-regulated gene sets and leads first to the prediction and then to the experimental validation of TFs interacting with cis-sequences conserved in the promoters of these co-regulated genes. RESULTS: Using the PathoPlant database, 32 up-regulated gene groups were identified with microarray data for drought-responsive gene expression from Arabidopsis thaliana. Application of the binding site estimation suite of tools (BEST) discovered 179 conserved sequence motifs within the corresponding promoters. Using the STAMP web-server, 49 sequence motifs were classified into 7 motif families for which similarities with known cis-regulatory sequences were identified. All motifs were subjected to a footprintDB analysis to predict interacting DNA binding domains from plant TF families. Predictions were confirmed by using a yeast-one-hybrid approach to select interacting TFs belonging to the predicted TF families. TF-DNA interactions were further experimentally validated in yeast and with a Physcomitrella patens transient expression system, leading to the discovery of several novel TF-DNA interactions. CONCLUSIONS: The present work demonstrates the successful integration of several bioinformatic resources with experimental approaches to predict and validate TFs interacting with conserved sequence motifs in co-regulated genes.
BMC genomics
Page URI


Dubos C, Kelemen Z, Sebastian A, et al. Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC genomics. 2014;15(1): 317.
Dubos, C., Kelemen, Z., Sebastian, A., Bülow, L., Huep, G., Xu, W., Grain, D., et al. (2014). Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC genomics, 15(1), 317. doi:10.1186/1471-2164-15-317
Dubos, C., Kelemen, Z., Sebastian, A., Bülow, L., Huep, G., Xu, W., Grain, D., Salsac, F., Brousse, C., Lepiniec, L., et al. (2014). Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC genomics 15:317.
Dubos, C., et al., 2014. Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC genomics, 15(1): 317.
C. Dubos, et al., “Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes”, BMC genomics, vol. 15, 2014, : 317.
Dubos, C., Kelemen, Z., Sebastian, A., Bülow, L., Huep, G., Xu, W., Grain, D., Salsac, F., Brousse, C., Lepiniec, L., Weisshaar, B., Contreras-Moreira, B., Hehl, R.: Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes. BMC genomics. 15, : 317 (2014).
Dubos, Christian, Kelemen, Zsolt, Sebastian, Alvaro, Bülow, Lorenz, Huep, Gunnar, Xu, Wenjia, Grain, Damaris, Salsac, Fabien, Brousse, Cecile, Lepiniec, Loïc, Weisshaar, Bernd, Contreras-Moreira, Bruno, and Hehl, Reinhard. “Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes”. BMC genomics 15.1 (2014): 317.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ethylene Response of Plum ACC Synthase 1 (ACS1) Promoter is Mediated through the Binding Site of Abscisic Acid Insensitive 5 (ABI5).
Sadka A, Qin Q, Feng J, Farcuh M, Shlizerman L, Zhang Y, Toubiana D, Blumwald E., Plants (Basel) 8(5), 2019
PMID: 31052513
Functional conservation of sequence determinants at rapidly evolving regulatory regions across mammals.
Huh I, Mendizabal I, Park T, Yi SV., PLoS Comput Biol 14(10), 2018
PMID: 30289877
TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation.
Pal S, Pal S, Kisko M, Dubos C, Lacombe B, Berthomieu P, Krouk G, Rouached H., Plant Physiol 175(2), 2017
PMID: 28827455
Boosting AthaMap Database Content with Data from Protein Binding Microarrays.
Hehl R, Norval L, Romanov A, Bülow L., Plant Cell Physiol 57(1), 2016
PMID: 26542109
Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast.
Kelemen Z, Sebastian A, Xu W, Grain D, Salsac F, Avon A, Berger N, Tran J, Dubreucq B, Lurin C, Lepiniec L, Contreras-Moreira B, Dubos C., PLoS One 10(10), 2015
PMID: 26484765

74 References

Daten bereitgestellt von Europe PubMed Central.

Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana.
Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu SH., Proc. Natl. Acad. Sci. U.S.A. 108(36), 2011
PMID: 21849619
Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis.
Koschmann J, Machens F, Becker M, Niemeyer J, Schulze J, Bulow L, Stahl DJ, Hehl R., Plant Physiol. 160(1), 2012
PMID: 22744985
Database-assisted promoter analysis.
Hehl R, Wingender E., Trends Plant Sci. 6(6), 2001
PMID: 11378466
Isolation and analysis of gene regulatory sequences
Cis-regulatory elements in plant cell signaling.
Priest HD, Filichkin SA, Mockler TC., Curr. Opin. Plant Biol. 12(5), 2009
PMID: 19717332
Co-expression tools for plant biology: opportunities for hypothesis generation and caveats.
Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ., Plant Cell Environ. 32(12), 2009
PMID: 19712066
AthaMap web tools for the analysis and identification of co-regulated genes.
Galuschka C, Schindler M, Bulow L, Hehl R., Nucleic Acids Res. 35(Database issue), 2006
PMID: 17148485
AthaMap, integrating transcriptional and post-transcriptional data.
Bulow L, Engelmann S, Schindler M, Hehl R., Nucleic Acids Res. 37(Database issue), 2008
PMID: 18842622
The value of prior knowledge in discovering motifs with MEME.
Bailey TL, Elkan C., Proc Int Conf Intell Syst Mol Biol 3(), 1995
PMID: 7584439
Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation.
Roth FP, Hughes JD, Estep PW, Church GM., Nat. Biotechnol. 16(10), 1998
PMID: 9788350
Identifying target sites for cooperatively binding factors.
GuhaThakurta D, Stormo GD., Bioinformatics 17(7), 2001
PMID: 11448879
Finding composite regulatory patterns in DNA sequences.
Eskin E, Pevzner PA., Bioinformatics 18 Suppl 1(), 2002
PMID: 12169566
BEST: binding-site estimation suite of tools.
Che D, Jensen S, Cai L, Liu JS., Bioinformatics 21(12), 2005
PMID: 15814553
PathoPlant: a database on plant-pathogen interactions.
Bulow L, Schindler M, Choi C, Hehl R., In Silico Biol. (Gedrukt) 4(4), 2004
PMID: 15752070
STAMP: a web tool for exploring DNA-binding motif similarities.
Mahony S, Benos PV., Nucleic Acids Res. 35(Web Server issue), 2007
PMID: 17478497
Plant cis-acting regulatory DNA elements (PLACE) database: 1999.
Higo K, Ugawa Y, Iwamoto M, Korenaga T., Nucleic Acids Res. 27(1), 1999
PMID: 9847208
AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors.
Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E., BMC Bioinformatics 4(), 2003
PMID: 12820902
AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome.
Steffens NO, Galuschka C, Schindler M, Bulow L, Hehl R., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681436
AthaMap: from in silico data to real transcription factor binding sites.
Bulow L, Steffens NO, Galuschka C, Schindler M, Hehl R., In Silico Biol. (Gedrukt) 6(3), 2006
PMID: 16922688
AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks.
Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E., Plant Physiol. 140(3), 2006
PMID: 16524982
AGRIS: the Arabidopsis Gene Regulatory Information Server, an update.
Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E., Nucleic Acids Res. 39(Database issue), 2010
PMID: 21059685
3D-footprint: a database for the structural analysis of protein-DNA complexes.
Contreras-Moreira B., Nucleic Acids Res. 38(Database issue), 2009
PMID: 19767616
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene.
Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR., Proc. Natl. Acad. Sci. U.S.A. 85(19), 1988
PMID: 2902624
A plant leucine zipper protein that recognizes an abscisic acid response element.
Guiltinan MJ, Marcotte WR Jr, Quatrano RS., Science 250(4978), 1990
PMID: 2145628
The rab16B promoter of rice contains two distinct abscisic acid-responsive elements.
Ono A, Izawa T, Chua NH, Shimamoto K., Plant Physiol. 112(2), 1996
PMID: 8883374
bZIP transcription factors in Arabidopsis.
Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F; bZIP Research Group., Trends Plant Sci. 7(3), 2002
PMID: 11906833
The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes.
Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M., PLoS ONE 3(8), 2008
PMID: 18698409
TRANSFAC: transcriptional regulation, from patterns to profiles.
Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E., Nucleic Acids Res. 31(1), 2003
PMID: 12520026
JASPAR: an open-access database for eukaryotic transcription factor binding profiles.
Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681366
MicroRNA Targets’A new AthaMap web-tool for genome-wide identification of miRNA targets in Arabidopsis thaliana
Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis.
Xu W, Grain D, Le Gourrierec J, Harscoet E, Berger A, Jauvion V, Scagnelli A, Berger N, Bidzinski P, Kelemen Z, Salsac F, Baudry A, Routaboul JM, Lepiniec L, Dubos C., New Phytol. 198(1), 2013
PMID: 23398515
Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter.
Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K., Plant Cell 16(9), 2004
PMID: 15319476
DNA-binding specificity and molecular functions of NAC transcription factors.
Olsen AN, Ernst HA, Lo Leggio L, Skriver K., Plant Sci. 169(4), 2005
PMID: IND43739429
A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants.
Ogo Y, Kobayashi T, Nakanishi Itai R, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK., J. Biol. Chem. 283(19), 2008
PMID: 18308732
Characterisation of Pt MYB1, an R2R3-MYB from pine xylem.
Patzlaff A, Newman LJ, Dubos C, Whetten RW, Smith C, McInnis S, Bevan MW, Sederoff RR, Campbell MM., Plant Mol. Biol. 53(4), 2003
PMID: 15010621
The interaction between MYB proteins and their target DNA binding sites
AtMYB61, an R2R3-MYB transcription factor, functions as a pleiotropic regulator via a small gene network.
Romano JM, Dubos C, Prouse MB, Wilkins O, Hong H, Poole M, Kang KY, Li E, Douglas CJ, Western TL, Mansfield SD, Campbell MM., New Phytol. 195(4), 2012
PMID: 22708996
MYB transcription factors in Arabidopsis.
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L., Trends Plant Sci. 15(10), 2010
PMID: 20674465
The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes.
Albani D, Hammond-Kosack MC, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW., Plant Cell 9(2), 1997
PMID: 9061949
Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily.
Duval M, Hsieh TF, Kim SY, Thomas TL., Plant Mol. Biol. 50(2), 2002
PMID: 12175016
NAC transcription factors in plant abiotic stress responses.
Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K., Biochim. Biophys. Acta 1819(2), 2011
PMID: 22037288
A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.
Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G., Plant Cell 20(2), 2008
PMID: 18263776
More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana.
Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J., Plant J. 14(3), 1998
PMID: 9628022
The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses.
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K., Plant J. 50(2), 2007
PMID: 17376166
NASCArrays: a repository for microarray data generated by NASC's transcriptomics service.
Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681484
Robust estimators for expression analysis.
Hubbell E, Liu WM, Mei R., Bioinformatics 18(12), 2002
PMID: 12490442
The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools.
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22140109
DNA binding sites: representation and discovery.
Stormo GD., Bioinformatics 16(1), 2000
PMID: 10812473
Tetraalkylammonium derivatives as real-time PCR enhancers and stabilizers of the qPCR mixtures containing SYBR Green I.
Shaik GM, Draberova L, Draber P, Boubelik M, Draber P., Nucleic Acids Res. 36(15), 2008
PMID: 18606615
RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more.
Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K, Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C, Balderas-Martinez YI, Pannier L, Olvera M, Labastida A, Jimenez-Jacinto V, Vega-Alvarado L, Del Moral-Chavez V, Hernandez-Alvarez A, Morett E, Collado-Vides J., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23203884
Large-scale discovery of promoter motifs in Drosophila melanogaster.
Down TA, Bergman CM, Su J, Hubbard TJ., PLoS Comput. Biol. 3(1), 2006
PMID: 17238282
DNA-binding specificities of human transcription factors.
Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei G, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes TR, Lemaire P, Ukkonen E, Kivioja T, Taipale J., Cell 152(1-2), 2013
PMID: 23332764
Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors.
Castrillo G, Turck F, Leveugle M, Lecharny A, Carbonero P, Coupland G, Paz-Ares J, Onate-Sanchez L., PLoS ONE 6(6), 2011
PMID: 21738689
The twilight zone of cis element alignments.
Sebastian A, Contreras-Moreira B., Nucleic Acids Res. 41(3), 2012
PMID: 23268451
A new system for fast and quantitative analysis of heterologous gene expression in plants.
Thevenin J, Dubos C, Xu W, Le Gourrierec J, Kelemen Z, Charlot F, Nogue F, Lepiniec L, Dubreucq B., New Phytol. 193(2), 2011
PMID: 22023451


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 24773781
PubMed | Europe PMC

Suchen in

Google Scholar