Fabrication of carbon nanomembranes by helium ion beam lithography

Zhang X, Vieker H, Beyer A, Gölzhäuser A (2014)
Beilstein Journal of Nanotechnology 5: 188-194.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The irradiation-induced cross-linking of aromatic self-assembled monolayers (SAMs) is a universal method for the fabrication of ultrathin carbon nanomembranes (CNMs). Here we demonstrate the cross-linking of aromatic SAMs due to exposure to helium ions. The distinction of cross-linked from non-cross-linked regions in the SAM was facilitated by transferring the irradiated SAM to a new substrate, which allowed for an ex situ observation of the cross-linking process by helium ion microscopy (HIM). In this way, three growth regimes of cross-linked areas were identified: formation of nuclei, one-dimensional (1D) and two-dimensional (2D) growth. The evaluation of the corresponding HIM images revealed the dose-dependent coverage, i.e., the relative monolayer area, whose density of cross-links surpassed a certain threshold value, as a function of the exposure dose. A complete cross-linking of aromatic SAMs by He+ ion irradiation requires an exposure dose of about 850 mu C/cm(2), which is roughly 60 times smaller than the corresponding electron irradiation dose. Most likely, this is due to the energy distribution of secondary electrons shifted to lower energies, which results in a more efficient dissociative electron attachment (DEA) process.
Stichworte
self-assembled; ion beam-organic molecules interactions; dissociative electron attachment; helium ion; microscopy; monolayers; carbon nanomembranes
Erscheinungsjahr
2014
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
5
Seite(n)
188-194
ISSN
2190-4286
eISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2673744

Zitieren

Zhang X, Vieker H, Beyer A, Gölzhäuser A. Fabrication of carbon nanomembranes by helium ion beam lithography. Beilstein Journal of Nanotechnology. 2014;5:188-194.
Zhang, X., Vieker, H., Beyer, A., & Gölzhäuser, A. (2014). Fabrication of carbon nanomembranes by helium ion beam lithography. Beilstein Journal of Nanotechnology, 5, 188-194. doi:10.3762/bjnano.5.20
Zhang, Xianghui, Vieker, Henning, Beyer, André, and Gölzhäuser, Armin. 2014. “Fabrication of carbon nanomembranes by helium ion beam lithography”. Beilstein Journal of Nanotechnology 5: 188-194.
Zhang, X., Vieker, H., Beyer, A., and Gölzhäuser, A. (2014). Fabrication of carbon nanomembranes by helium ion beam lithography. Beilstein Journal of Nanotechnology 5, 188-194.
Zhang, X., et al., 2014. Fabrication of carbon nanomembranes by helium ion beam lithography. Beilstein Journal of Nanotechnology, 5, p 188-194.
X. Zhang, et al., “Fabrication of carbon nanomembranes by helium ion beam lithography”, Beilstein Journal of Nanotechnology, vol. 5, 2014, pp. 188-194.
Zhang, X., Vieker, H., Beyer, A., Gölzhäuser, A.: Fabrication of carbon nanomembranes by helium ion beam lithography. Beilstein Journal of Nanotechnology. 5, 188-194 (2014).
Zhang, Xianghui, Vieker, Henning, Beyer, André, and Gölzhäuser, Armin. “Fabrication of carbon nanomembranes by helium ion beam lithography”. Beilstein Journal of Nanotechnology 5 (2014): 188-194.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes.
Koch S, Kaiser CD, Penner P, Barclay M, Frommeyer L, Emmrich D, Stohmann P, Abu-Husein T, Terfort A, Fairbrother DH, Ingólfsson O, Gölzhäuser A., Beilstein J Nanotechnol 8(), 2017
PMID: 29259871
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Scanning reflection ion microscopy in a helium ion microscope.
Petrov YV, Vyvenko OF., Beilstein J Nanotechnol 6(), 2015
PMID: 26171289
Focused particle beam-induced processing.
Huth M, Gölzhäuser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26665058

34 References

Daten bereitgestellt von Europe PubMed Central.


Turchanin A, Gölzhäuser A., 2012
A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.
Angelova P, Vieker H, Weber NE, Matei D, Reimer O, Meier I, Kurasch S, Biskupek J, Lorbach D, Wunderlich K, Chen L, Terfort A, Klapper M, Mullen K, Kaiser U, Golzhauser A, Turchanin A., ACS Nano 7(8), 2013
PMID: 23802686
Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles.
Nottbohm CT, Beyer A, Sologubenko AS, Ennen I, Hutten A, Rosner H, Eck W, Mayer J, Golzhauser A., Ultramicroscopy 108(9), 2008
PMID: 18406532
Mechanical characterization of carbon nanomembranes from self-assembled monolayers.
Zhang X, Beyer A, Golzhauser A., Beilstein J Nanotechnol 2(), 2011
PMID: 22259767

Turchanin A, Beyer A, Nottbohm C, Zhang X, Stosch R, Sologubenko A, Mayer J, Hinze P, Weimann T, Gölzhäuser A., 2009

Zheng Z, Nottbohm C, Turchanin A, Muzik H, Muzik A, Heilemann M, Sauer M, Gölzhäuser A., 2010

Ritter R, Wilhelm R, Stöger-Pollach M, Heller R, Mücklich A, Werner U, Vieker H, Beyer A, Facsko S, Gölzhäuser A., 2013
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Golzhauser A., Small 5(23), 2009
PMID: 19787678

Gölzhäuser A, Eck W, Geyer W, Stadler V, Weimann T, Hinze P, Grunze M., 2001
Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography.
Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Golzhauser A., Small 3(12), 2007
PMID: 17960749

Nottbohm C, Turchanin A, Beyer A, Gölzhäuser A., 2009
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375

Ada E, Hanley L, Etchin S, Melngailis J, Dressick W, Chen M-S, Calvert J., 1995
Modification and stability of aromatic self-assembled monolayers upon irradiation with energetic particles.
Cyganik P, Vandeweert E, Postawa Z, Bastiaansen J, Vervaecke F, Lievens P, Silverans RE, Winograd N., J Phys Chem B 109(11), 2005
PMID: 16863170

Evelyn A, Ila D, Zimmerman R, Bhat K, Poker D, Hensley D, Klatt C, Kalbitzer S, Just N, Drevet C., 1999

Rangel E, Cruz N, Lepienski C., 2002

Postek M, Vladár A, Archie C, Ming B., 2011
Contrast mechanisms and image formation in helium ion microscopy.
Bell DC., Microsc. Microanal. 15(2), 2009
PMID: 19284896

Maas D, van E, Chen P, Sidorkin V, Salemink H, van E, Alkemade P., 2010
Precision cutting and patterning of graphene with helium ions.
Bell DC, Lemme MC, Stern LA, Williams JR, Marcus CM., Nanotechnology 20(45), 2009
PMID: 19822934

Sidorkin V, van E, van E, Alkemade P, Salemink H, Maas D., 2009

Muthukumar M., 2004
Digging gold: keV He(+) ion interaction with Au.
Veligura V, Hlawacek G, Berkelaar RP, van Gastel R, Zandvliet HJ, Poelsema B., Beilstein J Nanotechnol 4(), 2013
PMID: 23946914

Andersson G, Morgner H., 1999
A model of secondary electron imaging in the helium ion scanning microscope.
Ramachandra R, Griffin B, Joy D., Ultramicroscopy 109(6), 2009
PMID: 19269097

Völkel B, Gölzhäuser A, Müller H, David C, Grunze M., 1997

Petrov Yu, Vyvenko O, Bondarenko A., 2010
Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons.
Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L., Science 287(5458), 2000
PMID: 10698742
DNA strand breaks induced by 0-4 eV electrons: the role of shape resonances.
Martin F, Burrow PD, Cai Z, Cloutier P, Hunting D, Sanche L., Phys. Rev. Lett. 93(6), 2004
PMID: 15323664

Fielding W, Pritchard H., 1962

Arulmozhiraja S, Fujii T., 2001

Voigtländer B., 2001
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24605285
PubMed | Europe PMC

Suchen in

Google Scholar