Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses
Wolff A, Hetaba W, Wißbrock M, Loeffler S, Mill N, Eckstädt K, Dreyer A, Ennen I, Sewald N, Schattschneider P, Hütten A (2014)
Beilstein Journal of Nanotechnology 5: 210-218.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Wolff, AnnalenaUniBi;
Hetaba, Walid;
Wißbrock, MarcoUniBi;
Loeffler, Stefan;
Mill, NadineUniBi;
Eckstädt, KatrinUniBi;
Dreyer, AxelUniBi;
Ennen, IngaUniBi;
Sewald, NorbertUniBi ;
Schattschneider, Peter;
Hütten, AndreasUniBi
Einrichtung
Abstract / Bemerkung
Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment.
Stichworte
growth;
oriented attachment;
polypeptide;
nanoparticle;
cobalt ferrite nanoparticles;
bioinspired synthesis
Erscheinungsjahr
2014
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
5
Seite(n)
210-218
Urheberrecht / Lizenzen
ISSN
2190-4286
eISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2673731
Zitieren
Wolff A, Hetaba W, Wißbrock M, et al. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses. Beilstein Journal of Nanotechnology. 2014;5:210-218.
Wolff, A., Hetaba, W., Wißbrock, M., Loeffler, S., Mill, N., Eckstädt, K., Dreyer, A., et al. (2014). Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses. Beilstein Journal of Nanotechnology, 5, 210-218. doi:10.3762/bjnano.5.23
Wolff, Annalena, Hetaba, Walid, Wißbrock, Marco, Loeffler, Stefan, Mill, Nadine, Eckstädt, Katrin, Dreyer, Axel, et al. 2014. “Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses”. Beilstein Journal of Nanotechnology 5: 210-218.
Wolff, A., Hetaba, W., Wißbrock, M., Loeffler, S., Mill, N., Eckstädt, K., Dreyer, A., Ennen, I., Sewald, N., Schattschneider, P., et al. (2014). Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses. Beilstein Journal of Nanotechnology 5, 210-218.
Wolff, A., et al., 2014. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses. Beilstein Journal of Nanotechnology, 5, p 210-218.
A. Wolff, et al., “Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses”, Beilstein Journal of Nanotechnology, vol. 5, 2014, pp. 210-218.
Wolff, A., Hetaba, W., Wißbrock, M., Loeffler, S., Mill, N., Eckstädt, K., Dreyer, A., Ennen, I., Sewald, N., Schattschneider, P., Hütten, A.: Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses. Beilstein Journal of Nanotechnology. 5, 210-218 (2014).
Wolff, Annalena, Hetaba, Walid, Wißbrock, Marco, Loeffler, Stefan, Mill, Nadine, Eckstädt, Katrin, Dreyer, Axel, Ennen, Inga, Sewald, Norbert, Schattschneider, Peter, and Hütten, Andreas. “Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses”. Beilstein Journal of Nanotechnology 5 (2014): 210-218.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 3.0 Unported (CC BY 3.0):
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:23Z
MD5 Prüfsumme
9cf4bdb7e6a3222a0c13475177628672
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1.
Valverde-Tercedor C, Montalbán-López M, Perez-Gonzalez T, Sanchez-Quesada MS, Prozorov T, Pineda-Molina E, Fernandez-Vivas MA, Rodriguez-Navarro AB, Trubitsyn D, Bazylinski DA, Jimenez-Lopez C., Appl Microbiol Biotechnol 99(12), 2015
PMID: 25874532
Valverde-Tercedor C, Montalbán-López M, Perez-Gonzalez T, Sanchez-Quesada MS, Prozorov T, Pineda-Molina E, Fernandez-Vivas MA, Rodriguez-Navarro AB, Trubitsyn D, Bazylinski DA, Jimenez-Lopez C., Appl Microbiol Biotechnol 99(12), 2015
PMID: 25874532
26 References
Daten bereitgestellt von Europe PubMed Central.
Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties.
Cao X, Gu L., Nanotechnology 16(2), 2004
PMID: 21727421
Cao X, Gu L., Nanotechnology 16(2), 2004
PMID: 21727421
Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers.
Baldi G, Bonacchi D, Franchini MC, Gentili D, Lorenzi G, Ricci A, Ravagli C., Langmuir 23(7), 2007
PMID: 17335257
Baldi G, Bonacchi D, Franchini MC, Gentili D, Lorenzi G, Ricci A, Ravagli C., Langmuir 23(7), 2007
PMID: 17335257
Zhang Q, Liu S, Yu S-H., 2009
Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures.
Colfen H, Mann S., Angew. Chem. Int. Ed. Engl. 42(21), 2003
PMID: 12783497
Colfen H, Mann S., Angew. Chem. Int. Ed. Engl. 42(21), 2003
PMID: 12783497
Oaki Y, Kotachi A, Miura T, Imai H., 2006
Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly.
Niederberger M, Colfen H., Phys Chem Chem Phys 8(28), 2006
PMID: 16835675
Niederberger M, Colfen H., Phys Chem Chem Phys 8(28), 2006
PMID: 16835675
Cölfen H, Antonietti M., 2008
Penn R, Banfield J., 1998
Biomineralization: Self-Assembly Processes
Yu S, Chen S., 2011
Yu S, Chen S., 2011
Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment.
Colfen H, Antonietti M., Angew. Chem. Int. Ed. Engl. 44(35), 2005
PMID: 16035009
Colfen H, Antonietti M., Angew. Chem. Int. Ed. Engl. 44(35), 2005
PMID: 16035009
Mesocrystals--ordered nanoparticle superstructures.
Song RQ, Colfen H., Adv. Mater. Weinheim 22(12), 2010
PMID: 20437477
Song RQ, Colfen H., Adv. Mater. Weinheim 22(12), 2010
PMID: 20437477
Oriented aggregation: formation and transformation of mesocrystal intermediates revealed.
Yuwono VM, Burrows ND, Soltis JA, Penn RL., J. Am. Chem. Soc. 132(7), 2010
PMID: 20112897
Yuwono VM, Burrows ND, Soltis JA, Penn RL., J. Am. Chem. Soc. 132(7), 2010
PMID: 20112897
Schwahn D, Ma Y, Cölfen H., 2007
Penn R., 2004
Imperfect oriented attachment: dislocation generation in defect-free nanocrystals
Penn RL, Banfield JF., Science 281(5379), 1998
PMID: 9703506
Penn RL, Banfield JF., Science 281(5379), 1998
PMID: 9703506
From nanoscale liquid spheres to anisotropic crystalline particles of tin: decomposition of decamethylstannocene in organic solvents.
Dreyer A, Ennen I, Koop T, Hutten A, Jutzi P., Small 7(21), 2011
PMID: 21932284
Dreyer A, Ennen I, Koop T, Hutten A, Jutzi P., Small 7(21), 2011
PMID: 21932284
Burrows N, Hale C, Penn R., 2012
Burrows N, Hale C, Penn R., 2013
Direction-specific interactions control crystal growth by oriented attachment.
Li D, Nielsen MH, Lee JR, Frandsen C, Banfield JF, De Yoreo JJ., Science 336(6084), 2012
PMID: 22628650
Li D, Nielsen MH, Lee JR, Frandsen C, Banfield JF, De Yoreo JJ., Science 336(6084), 2012
PMID: 22628650
Wolff A, Frese K, Wißbrock M, Eckstädt K, Ennen I, Hetaba W, Löffler S, Regtmeier A, Thomas P, Sewald N., 2012
Probing peptide-nanomaterial interactions.
Slocik JM, Naik RR., Chem Soc Rev 39(9), 2010
PMID: 20672177
Slocik JM, Naik RR., Chem Soc Rev 39(9), 2010
PMID: 20672177
Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria.
Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada SK, Narasimhan B, Canfield PC, Prozorov R., ACS Nano 1(3), 2007
PMID: 19206653
Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada SK, Narasimhan B, Canfield PC, Prozorov R., ACS Nano 1(3), 2007
PMID: 19206653
Egerton R., 2009
Progress of nanocrystalline growth kinetics based on oriented attachment.
Zhang J, Huang F, Lin Z., Nanoscale 2(1), 2009
PMID: 20648361
Zhang J, Huang F, Lin Z., Nanoscale 2(1), 2009
PMID: 20648361
Controlling mineral morphologies and structures in biological and synthetic systems.
Meldrum FC, Colfen H., Chem. Rev. 108(11), 2008
PMID: 19006397
Meldrum FC, Colfen H., Chem. Rev. 108(11), 2008
PMID: 19006397
Egerton R., 1996
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 24605288
PubMed | Europe PMC
Suchen in