Long-term memory-based control of attention in multi-step tasks requires working memory: Evidence from domain-specific interference

Foerster RM, Carbone E, Schneider WX (2014)
Frontiers in Psychology 2014(5): 408.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Forschungsgruppe
Learning to attend in sensorimotor task
Abstract / Bemerkung
Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Psychology
Band
2014
Ausgabe
5
Art.-Nr.
408
eISSN
PUB-ID

Zitieren

Foerster RM, Carbone E, Schneider WX. Long-term memory-based control of attention in multi-step tasks requires working memory: Evidence from domain-specific interference. Frontiers in Psychology. 2014;2014(5): 408.
Foerster, R. M., Carbone, E., & Schneider, W. X. (2014). Long-term memory-based control of attention in multi-step tasks requires working memory: Evidence from domain-specific interference. Frontiers in Psychology, 2014(5), 408. doi:10.3389/fpsyg.2014.00408
Foerster, R. M., Carbone, E., and Schneider, W. X. (2014). Long-term memory-based control of attention in multi-step tasks requires working memory: Evidence from domain-specific interference. Frontiers in Psychology 2014:408.
Foerster, R.M., Carbone, E., & Schneider, W.X., 2014. Long-term memory-based control of attention in multi-step tasks requires working memory: Evidence from domain-specific interference. Frontiers in Psychology, 2014(5): 408.
R.M. Foerster, E. Carbone, and W.X. Schneider, “Long-term memory-based control of attention in multi-step tasks requires working memory: Evidence from domain-specific interference”, Frontiers in Psychology, vol. 2014, 2014, : 408.
Foerster, R.M., Carbone, E., Schneider, W.X.: Long-term memory-based control of attention in multi-step tasks requires working memory: Evidence from domain-specific interference. Frontiers in Psychology. 2014, : 408 (2014).
Foerster, Rebecca M., Carbone, Elena, and Schneider, Werner X. “Long-term memory-based control of attention in multi-step tasks requires working memory: Evidence from domain-specific interference”. Frontiers in Psychology 2014.5 (2014): 408.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2014-06-04T15:32:04Z

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

55 References

Daten bereitgestellt von Europe PubMed Central.


Anderson J.., 1993
Overlapping mechanisms of attention and spatial working memory.
Awh E, Jonides J., Trends Cogn. Sci. (Regul. Ed.) 5(3), 2001
PMID: 11239812
Rehearsal in spatial working memory.
Awh E, Jonides J, Reuter-Lorenz PA., J Exp Psychol Hum Percept Perform 24(3), 1998
PMID: 9627416
Overlapping mechanisms of attention and spatial working memory.
Awh E, Jonides J., Trends Cogn. Sci. (Regul. Ed.) 5(3), 2001
PMID: 11239812
Dissociation of storage and rehearsal in verbal working memory: evidence from PET
Awh E., Jonides J., Smith E., Schumacher E., Koeppe R., Katz S.., 1996
Human rehearsal processes and the frontal lobes: PET evidence
Awh E., Smith E., Jonides J.., 1995
Interactions between attention and working memory.
Awh E, Vogel EK, Oh SH., Neuroscience 139(1), 2005
PMID: 16324792

Baddeley A.., 1986
The episodic buffer: a new component of working memory?
Baddeley A., Trends Cogn. Sci. (Regul. Ed.) 4(11), 2000
PMID: 11058819
Working memory: looking back and looking forward.
Baddeley A., Nat. Rev. Neurosci. 4(10), 2003
PMID: 14523382
Working memory: theories, models, and controversies.
Baddeley A., Annu Rev Psychol 63(), 2011
PMID: 21961947
Binding in visual working memory: the role of the episodic buffer.
Baddeley AD, Allen RJ, Hitch GJ., Neuropsychologia 49(6), 2011
PMID: 21256143
Working memory
Baddeley A., Hitch G.., 1974
Developments in the concept of working memory
Baddeley A., Hitch G.., 1994
Multiple memory deficits in patients with multiple sclerosis. Exploring the working memory system.
Litvan I, Grafman J, Vendrell P, Martinez JM, Junque C, Vendrell JM, Barraquer-Bordas JL., Arch. Neurol. 45(6), 1988
PMID: 3369966
A theory of visual attention.
Bundesen C., Psychol Rev 97(4), 1990
PMID: 2247540

Bundesen C., Habekost T.., 2008
The parietal cortex and episodic memory: an attentional account.
Cabeza R, Ciaramelli E, Olson IR, Moscovitch M., Nat. Rev. Neurosci. 9(8), 2008
PMID: 18641668
Task demands control acquisition and storage of visual information.
Droll JA, Hayhoe MM, Triesch J, Sullivan BT., J Exp Psychol Hum Percept Perform 31(6), 2005
PMID: 16366799
Working memory maintenance of grasp-target information in the human posterior parietal cortex.
Fiehler K, Bannert MM, Bischoff M, Blecker C, Stark R, Vaitl D, Franz VH, Rosler F., Neuroimage 54(3), 2010
PMID: 20932912

Fitts P., Posner M.., 1967
Saccadic eye movements in the dark while performing an automatized sequential high-speed sensorimotor task.
Foerster RM, Carbone E, Koesling H, Schneider WX., J Vis 12(2), 2012
PMID: 22323821
Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex.
Funahashi S, Bruce CJ, Goldman-Rakic PS., J. Neurophysiol. 61(2), 1989
PMID: 2918358
Top-down modulation: bridging selective attention and working memory.
Gazzaley A, Nobre AC., Trends Cogn. Sci. (Regul. Ed.) 16(2), 2011
PMID: 22209601
Visual memory and motor planning in a natural task.
Hayhoe MM, Shrivastava A, Mruczek R, Pelz JB., J Vis 3(1), 2003
PMID: 12678625
Eye movements during scene recollection have a functional role, but they are not reinstatements of those produced during encoding.
Johansson R, Holsanova J, Dewhurst R, Holmqvist K., J Exp Psychol Hum Percept Perform 38(5), 2011
PMID: 22201467
Automatic attraction of attention to former targets in visual displays of letters.
Kyllingsbaek S, Schneider WX, Bundesen C., Percept Psychophys 63(1), 2001
PMID: 11304019
The roles of vision and eye movements in the control of activities of daily living.
Land M, Mennie N, Rusted J., Perception 28(11), 1999
PMID: 10755142
Steering with the head. the visual strategy of a racing driver.
Land MF, Tatler BW., Curr. Biol. 11(15), 2001
PMID: 11516955

Land M., Tatler B.., 2009
Using confidence intervals in within-subject designs.
Loftus GR, Masson ME., Psychon Bull Rev 1(4), 1994
PMID: 24203555
Towards an instance theory of automatization
Logan G.., 1988
Repetition priming and automaticity: common underlying mechanisms?
Logan G.., 1990
Attention supports verbal short-term memory via competition between dorsal and ventral attention networks.
Majerus S, Attout L, D'Argembeau A, Degueldre C, Fias W, Maquet P, Martinez Perez T, Stawarczyk D, Salmon E, Van der Linden M, Phillips C, Balteau E., Cereb. Cortex 22(5), 2011
PMID: 21765184
Automatic processing: a review of recent findings and a plea for an old theory
Neumann O.., 1984
Direct parameter specification and the concept of perception.
Neumann O., Psychol Res 52(2-3), 1990
PMID: 2281129
Design for a working memory
Oberauer K.., 2009
Declarative and procedural working memory: common principles, common capacity limits?
Oberauer K.., 2010
Different states in visual working memory: when it guides attention and when it does not.
Olivers CN, Peters J, Houtkamp R, Roelfsema PR., Trends Cogn. Sci. (Regul. Ed.) 15(7), 2011
PMID: 21665518
Disruption of short-term memory by unattended speech: implications for the structure of working memory
Salame P., Baddeley A.., 1982
Controlled and automatic human information processing: I. Detection, search and attention
Schneider W., Shiffrin R.., 1977
Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory
Schneider W., Shiffrin R.., 1977
Selective visual processing across competition episodes: a theory of task-driven visual attention and working memory.
Schneider WX., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368(1628), 2013
PMID: 24018722
Interference in immediate spatial memory.
Smyth MM, Scholey KA., Mem Cognit 22(1), 1994
PMID: 8035679
Attention on our mind: the role of spatial attention in visual working memory.
Theeuwes J, Kramer AF, Irwin DE., Acta Psychol (Amst) 137(2), 2010
PMID: 20637448
Parietal lobe contributions to episodic memory retrieval.
Wagner AD, Shannon BJ, Kahn I, Buckner RL., Trends Cogn. Sci. (Regul. Ed.) 9(9), 2005
PMID: 16054861
Where do we store the memory representations that guide attention?
Woodman GF, Carlisle NB, Reinhart RM., J Vis 13(3), 2013
PMID: 23444390
How verbal memory loads consume attention.
Chen Z, Cowan N., Mem Cognit 37(6), 2009
PMID: 19679862

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24847304
PubMed | Europe PMC

Suchen in

Google Scholar