Weak commutation relations and eigenvalue statistics for products of rectangular random matrices
Ipsen J, Kieburg M (2014)
Physical Review E 89(3): 32106.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
We study the joint probability density of the eigenvalues of a product of rectangular real, complex, or quaternion random matrices in a unified way. The random matrices are distributed according to arbitrary probability densities, whose only restriction is the invariance under left and right multiplication by orthogonal, unitary, or unitary symplectic matrices, respectively. We show that a product of rectangular matrices is statistically equivalent to a product of square matrices. Hereby we prove a weak commutation relation of the random matrices at finite matrix sizes, which previously has been discussed for infinite matrix size. Moreover, we derive the joint probability densities of the eigenvalues. To illustrate our results, we apply them to a product of random matrices drawn from Ginibre ensembles and Jacobi ensembles as well as a mixed version thereof. For these weights, we show that the product of complex random matrices yields a determinantal point process, while the real and quaternion matrix ensembles correspond to Pfaffian point processes. Our results are visualized by numerical simulations. Furthermore, we present an application to a transport on a closed, disordered chain coupled to a particle bath.
Erscheinungsjahr
2014
Zeitschriftentitel
Physical Review E
Band
89
Ausgabe
3
Art.-Nr.
32106
ISSN
1539-3755
eISSN
1550-2376
Page URI
https://pub.uni-bielefeld.de/record/2671285
Zitieren
Ipsen J, Kieburg M. Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Physical Review E. 2014;89(3): 32106.
Ipsen, J., & Kieburg, M. (2014). Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Physical Review E, 89(3), 32106. doi:10.1103/PhysRevE.89.032106
Ipsen, Jesper, and Kieburg, Mario. 2014. “Weak commutation relations and eigenvalue statistics for products of rectangular random matrices”. Physical Review E 89 (3): 32106.
Ipsen, J., and Kieburg, M. (2014). Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Physical Review E 89:32106.
Ipsen, J., & Kieburg, M., 2014. Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Physical Review E, 89(3): 32106.
J. Ipsen and M. Kieburg, “Weak commutation relations and eigenvalue statistics for products of rectangular random matrices”, Physical Review E, vol. 89, 2014, : 32106.
Ipsen, J., Kieburg, M.: Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Physical Review E. 89, : 32106 (2014).
Ipsen, Jesper, and Kieburg, Mario. “Weak commutation relations and eigenvalue statistics for products of rectangular random matrices”. Physical Review E 89.3 (2014): 32106.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 24730789
PubMed | Europe PMC
arXiv: 1310.4154
Inspire: 1260609
Suchen in