Estimating causal effects with longitudinal data: does unemployment affect mental health?

Schunck R (2014)
In: SAGE Cases in Methodology. 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE: 1-21.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
This case study discusses some properties and advantages of longitudinal data analysis, by examining the exemplary research question: Does unemployment affect mental health? A fundamental problem in the analysis of observational data is unobserved heterogeneity, also known as omitted variable bias. Unobserved heterogeneity refers to unobserved differences in respondents that affect both the independent and the dependent variables. The presence of unobserved heterogeneity will cause our effect estimates to be biased, i.e. incorrect. The case study first discusses the basics structure of longitudinal data and how these data differ from cross-sectional data. Second, it briefly sketches why unemployment may impact mental health. Third, it lays out the difficulties of drawing causal inferences from observational data by portraying the counterfactual approach to causality. Fourth, it discusses popular models for the analysis of longitudinal data (random effects models, fixed effects models, and hybrid models). Fifth, the application of these models is illustrated by investigating how unemployment affects mental health with longitudinal German data (German Socio-economic Panel).
Stichworte
Mental health; Unobserved heterogeneity; Unemployment; Hybrid model; Longitudinal data; Panel data; Fixed effects; Random effects; Correlated random effects
Erscheinungsjahr
2014
Buchtitel
SAGE Cases in Methodology
Seite(n)
1-21
ISBN
9781473950917
Page URI
https://pub.uni-bielefeld.de/record/2668882

Zitieren

Schunck R. Estimating causal effects with longitudinal data: does unemployment affect mental health? In: SAGE Cases in Methodology. 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE; 2014: 1-21.
Schunck, R. (2014). Estimating causal effects with longitudinal data: does unemployment affect mental health? SAGE Cases in Methodology, 1-21. 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE. doi:10.4135/978144627305014533933
Schunck, Reinhard. 2014. “Estimating causal effects with longitudinal data: does unemployment affect mental health?”. In SAGE Cases in Methodology, 1-21. 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE.
Schunck, R. (2014). “Estimating causal effects with longitudinal data: does unemployment affect mental health?” in SAGE Cases in Methodology (1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE), 1-21.
Schunck, R., 2014. Estimating causal effects with longitudinal data: does unemployment affect mental health? In SAGE Cases in Methodology. 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE, pp. 1-21.
R. Schunck, “Estimating causal effects with longitudinal data: does unemployment affect mental health?”, SAGE Cases in Methodology, 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE, 2014, pp.1-21.
Schunck, R.: Estimating causal effects with longitudinal data: does unemployment affect mental health? SAGE Cases in Methodology. p. 1-21. SAGE, 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom  (2014).
Schunck, Reinhard. “Estimating causal effects with longitudinal data: does unemployment affect mental health?”. SAGE Cases in Methodology. 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE, 2014. 1-21.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche