The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation

Zakrzewski F, Schubert V, Viehöver P, Minoche AE, Dohm JC, Himmelbauer H, Weisshaar B, Schmidt T (2014)
The Plant Journal 78(6): 937-950.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Zakrzewski, Falk; Schubert, Veit; Viehöver, PriscaUniBi; Minoche, André E.; Dohm, Juliane C.; Himmelbauer, Heinz; Weisshaar, BerndUniBi ; Schmidt, Thomas
Abstract / Bemerkung
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next-generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome-wide fluorescent in situ hybridization complemented with immunostaining and super-resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44-52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes. 2014 The Authors The Plant Journal 2014 John Wiley & Sons Ltd.
Erscheinungsjahr
2014
Zeitschriftentitel
The Plant Journal
Band
78
Ausgabe
6
Seite(n)
937-950
ISSN
0960-7412
Page URI
https://pub.uni-bielefeld.de/record/2668850

Zitieren

Zakrzewski F, Schubert V, Viehöver P, et al. The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. The Plant Journal. 2014;78(6):937-950.
Zakrzewski, F., Schubert, V., Viehöver, P., Minoche, A. E., Dohm, J. C., Himmelbauer, H., Weisshaar, B., et al. (2014). The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. The Plant Journal, 78(6), 937-950. doi:10.1111/tpj.12519
Zakrzewski, F., Schubert, V., Viehöver, P., Minoche, A. E., Dohm, J. C., Himmelbauer, H., Weisshaar, B., and Schmidt, T. (2014). The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. The Plant Journal 78, 937-950.
Zakrzewski, F., et al., 2014. The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. The Plant Journal, 78(6), p 937-950.
F. Zakrzewski, et al., “The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation”, The Plant Journal, vol. 78, 2014, pp. 937-950.
Zakrzewski, F., Schubert, V., Viehöver, P., Minoche, A.E., Dohm, J.C., Himmelbauer, H., Weisshaar, B., Schmidt, T.: The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation. The Plant Journal. 78, 937-950 (2014).
Zakrzewski, Falk, Schubert, Veit, Viehöver, Prisca, Minoche, André E., Dohm, Juliane C., Himmelbauer, Heinz, Weisshaar, Bernd, and Schmidt, Thomas. “The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation”. The Plant Journal 78.6 (2014): 937-950.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).
Zakrzewski F, Schmidt M, Van Lijsebettens M, Schmidt T., Plant J 90(6), 2017
PMID: 28257158
Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species.
Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A, Dohm JC, Weisshaar B, Himmelbauer H, Schmidt T., Plant J 85(2), 2016
PMID: 26676716
Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris).
Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehoever P, Weisshaar B, Schmidt T., BMC Plant Biol 16(1), 2016
PMID: 27230558

47 References

Daten bereitgestellt von Europe PubMed Central.

Nuclear DNA content of some important plant species
Arumuganathan, Plant Mol. Biol. Rep. 9(), 1991
Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana.
Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE., PLoS ONE 3(9), 2008
PMID: 18776934
Satellite DNA-like elements associated with genes within euchromatin of the beetle Tribolium castaneum.
Brajkovic J, Feliciello I, Bruvo-Mađaric B, Ugarkovic D., G3 (Bethesda) 2(8), 2012
PMID: 22908042
Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.
Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE., Nature 452(7184), 2008
PMID: 18278030
The genome of the recently domesticated crop plant sugar beet (Beta vulgaris).
Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldon T, Lehrach H, Weisshaar B, Himmelbauer H., Nature 505(7484), 2013
PMID: 24352233
Genome size and the proportion of repeated nucleotide sequence DNA in plants.
Flavell RB, Bennett MD, Smith JB, Smith DB., Biochem. Genet. 12(4), 1974
PMID: 4441361
Chromosomal histone modification patterns--from conservation to diversity.
Fuchs J, Demidov D, Houben A, Schubert I., Trends Plant Sci. 11(4), 2006
PMID: 16546438
CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize.
Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, Dawe RK., Genome Res. 23(4), 2012
PMID: 23269663
Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids
Hemleben, Syst. Biodivers. 5(), 2007
Epigenetic inheritance in plants.
Henderson IR, Jacobsen SE., Nature 447(7143), 2007
PMID: 17522675
The SRA methyl-cytosine-binding domain links DNA and histone methylation.
Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, Jacobsen SE., Curr. Biol. 17(4), 2007
PMID: 17239600
High-resolution organization of mouse centromeric and pericentromeric DNA.
Kuznetsova I, Podgornaya O, Ferguson-Smith MA., Cytogenet. Genome Res. 112(3-4), 2006
PMID: 16484780
Plant chromosomes from end to end: telomeres, heterochromatin and centromeres.
Lamb JC, Yu W, Han F, Birchler JA., Curr. Opin. Plant Biol. 10(2), 2007
PMID: 17291819
Epigenetic regulation of transposable elements in plants.
Lisch D., Annu Rev Plant Biol 60(), 2009
PMID: 19007329
Highly integrated single-base resolution maps of the epigenome in Arabidopsis.
Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR., Cell 133(3), 2008
PMID: 18423832
Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives.
Menzel G, Krebs C, Diez M, Holtgrawe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Plant Mol. Biol. 78(4-5), 2012
PMID: 22246381
Stretching the rules: monocentric chromosomes with multiple centromere domains.
Neumann P, Navratilova A, Schroeder-Reiter E, Koblizkova A, Steinbauerova V, Chocholova E, Novak P, Wanner G, Macas J., PLoS Genet. 8(6), 2012
PMID: 22737088
The Norway spruce genome sequence and conifer genome evolution.
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S., Nature 497(7451), 2013
PMID: 23698360
Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding
Peng, Prog. Nat. Sci. 19(), 2009
Satellite DNA-mediated effects on genome regulation
Pezer, Genome Dyn. 7(), 2010
A transcription fork model for Pol IV and Pol V-dependent RNA-directed DNA methylation
Pikaard, Cold Spring Harb. Symp. Quant. Biol. 77(), 2013

Sambrook, 1989
Genomes, genes and junk: the large-scale organization of plant chromosomes
Schmidt, Trends Plant Sci. 3(), 1998
A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet.
Schulte D, Cai D, Kleine M, Fan L, Wang S, Jung C., Mol. Genet. Genomics 275(5), 2006
PMID: 16496176
Epigenetic reprogramming and small RNA silencing of transposable elements in pollen.
Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA., Cell 136(3), 2009
PMID: 19203581
Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa.
Steflova P, Tokan V, Vogel I, Lexa M, Macas J, Novak P, Hobza R, Vyskot B, Kejnovsky E., Genome Biol Evol 5(4), 2013
PMID: 23542206
DNA methylation landscapes: provocative insights from epigenomics.
Suzuki MM, Bird A., Nat. Rev. Genet. 9(6), 2008
PMID: 18463664
Repeat elements and the Arabidopsis DNA methylation landscape.
Teixeira FK, Colot V., Heredity (Edinb) 105(1), 2010
PMID: 20461104
Functional elements residing within satellite DNAs.
Ugarkovic D., EMBO Rep. 6(11), 2005
PMID: 16264428
Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome.
Wollrab C, Heitkam T, Holtgrawe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Plant J. 72(4), 2012
PMID: 22804913
Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris.
Zakrzewski F, Wenke T, Holtgrawe D, Weisshaar B, Schmidt T., BMC Plant Biol. 10(), 2010
PMID: 20064260
Epigenetic profiling of heterochromatic satellite DNA.
Zakrzewski F, Weisshaar B, Fuchs J, Bannack E, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T., Chromosoma 120(4), 2011
PMID: 21594600
A molecular cytogenetic analysis of the structure, evolution, and epigenetic modifications of major DNA sequences in centromeres of Beta species
Zakrzewski, Plant Centromere Biol. 3(), 2013
Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis.
Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE., PLoS Biol. 5(5), 2007
PMID: 17439305
Genome-wide analysis of DNA methylation patterns.
Zilberman D, Henikoff S., Development 134(22), 2007
PMID: 17928417

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24661787
PubMed | Europe PMC

Suchen in

Google Scholar