Improved tolerance of recombinant *Escherichia coli* to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (*otsBA*) for the production of β-carotene

Nguyen AQ, Kim YG, Kim SB, Kim CJ (2013)
Bioresource Technology 143: 531-537.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Nguyen, Anh QuynhUniBi; Kim, Y. G.; Kim, S. B.; Kim, C. J.
Erscheinungsjahr
2013
Zeitschriftentitel
Bioresource Technology
Band
143
Seite(n)
531-537
ISSN
0960-8524
Page URI
https://pub.uni-bielefeld.de/record/2665733

Zitieren

Nguyen AQ, Kim YG, Kim SB, Kim CJ. Improved tolerance of recombinant *Escherichia coli* to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (*otsBA*) for the production of β-carotene. Bioresource Technology. 2013;143:531-537.
Nguyen, A. Q., Kim, Y. G., Kim, S. B., & Kim, C. J. (2013). Improved tolerance of recombinant *Escherichia coli* to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (*otsBA*) for the production of β-carotene. Bioresource Technology, 143, 531-537. doi:10.1016/j.biortech.2013.06.034
Nguyen, A. Q., Kim, Y. G., Kim, S. B., and Kim, C. J. (2013). Improved tolerance of recombinant *Escherichia coli* to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (*otsBA*) for the production of β-carotene. Bioresource Technology 143, 531-537.
Nguyen, A.Q., et al., 2013. Improved tolerance of recombinant *Escherichia coli* to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (*otsBA*) for the production of β-carotene. Bioresource Technology, 143, p 531-537.
A.Q. Nguyen, et al., “Improved tolerance of recombinant *Escherichia coli* to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (*otsBA*) for the production of β-carotene”, Bioresource Technology, vol. 143, 2013, pp. 531-537.
Nguyen, A.Q., Kim, Y.G., Kim, S.B., Kim, C.J.: Improved tolerance of recombinant *Escherichia coli* to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (*otsBA*) for the production of β-carotene. Bioresource Technology. 143, 531-537 (2013).
Nguyen, Anh Quynh, Kim, Y. G., Kim, S. B., and Kim, C. J. “Improved tolerance of recombinant *Escherichia coli* to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (*otsBA*) for the production of β-carotene”. Bioresource Technology 143 (2013): 531-537.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Fermentative Production of N-Methylglutamate From Glycerol by Recombinant Pseudomonas putida.
Mindt M, Walter T, Risse JM, Wendisch VF., Front Bioeng Biotechnol 6(), 2018
PMID: 30474025
Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture.
Thanapimmetha A, Suwaleerat T, Saisriyoot M, Chisti Y, Srinophakun P., Bioprocess Biosyst Eng 40(1), 2017
PMID: 27646907
Insight into thermophiles and their wide-spectrum applications.
Mehta R, Singhal P, Singh H, Damle D, Sharma AK., 3 Biotech 6(1), 2016
PMID: 28330151
Cold stress promoting a psychrotolerant bacterium Pseudomonas fragi P121 producing trehaloase.
Mei YZ, Huang PW, Liu Y, He W, Fang WW., World J Microbiol Biotechnol 32(8), 2016
PMID: 27339315
Improved glycerol to ethanol conversion by E. coli using a metagenomic fragment isolated from an anaerobic reactor.
Loaces I, Rodríguez C, Amarelle V, Fabiano E, Noya F., J Ind Microbiol Biotechnol 43(10), 2016
PMID: 27522660

35 References

Daten bereitgestellt von Europe PubMed Central.

Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans.
Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Arguelles JC., Microbiology (Reading, Engl.) 148(Pt 8), 2002
PMID: 12177354
Oxidative stress in bacteria and protein damage by reactive oxygen species
Cabiscol, Internatl. Microbiol. 3(), 2000
Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718.
Chatzifragkou A, Dietz D, Komaitis M, Zeng AP, Papanikolaou S., Biotechnol. Bioeng. 107(1), 2010
PMID: 20506102
Mechanisms and factors for edible oil oxidation
Choe, Comp. Rev. Food Sci. Food Saf. 5(), 2006
The inhibitory action of fatty acids on the growth of Escherichia coli.
Fay JP, Farias RN., J. Gen. Microbiol. 91(2), 1975
PMID: 1107472
A simple method for the isolation and purification of total lipides from animal tissues.
FOLCH J, LEES M, SLOANE STANLEY GH., J. Biol. Chem. 226(1), 1957
PMID: 13428781
A new enzymo-chemical method for simultaneous assay of methanol and formaldehyde.
Gonchar MV, Grabek D, Oklejewich B, Pavlishko HM, Shamlian OV, Sybirny VA, Kotylak Z, Rudke K, Csoregi E, Sibirny AA., Ukr Biokhim Zh (1999) 77(3), 2005
PMID: 16566143
Methanol thermodynamic properties from 176 to 673K at pressures to 700 bar
Goodwin, J. Phys. Chem. Ref. Data. 16(), 1987
Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress.
Herdeiro RS, Pereira MD, Panek AD, Eleutherio EC., Biochim. Biophys. Acta 1760(3), 2006
PMID: 16510250
Adaptation of membrane lipids to alcohols.
Ingram LO., J. Bacteriol. 125(2), 1976
PMID: 1107328
Fatty acids and derivatives as antimicrobial agents.
Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP., Antimicrob. Agents Chemother. 2(1), 1972
PMID: 4670656
The effects of unsaturated fatty acids on Helicobacter pylori in vitro.
Khulusi S, Ahmed HA, Patel P, Mendall MA, Northfield TC., J. Med. Microbiol. 42(4), 1995
PMID: 7707336
High cell density cultivation of Escherichia coli W using sucrose as a carbon source
Lee, Biotechnol. Lett. 15(), 1993
Converting crude glycerol derived from yellow grease to lipids through yeast fermentation
Liang, Biores. Technol. 101(), 2010
Bioconversion of crude glycerol to glycolipids in Ustilago maydis
Liu, Biores. Technol. 102(), 2011
Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus
Liu, Biores. Technol. 104(), 2012
Susceptibility of Escherichia coli to C2-C18 fatty acids.
Marounek M, Skrivanova E, Rada V., Folia Microbiol. (Praha) 48(6), 2003
PMID: 15058184
The role of trehalose and its transporter in protection against reactive oxygen species.
da Costa Morato Nery D, da Silva CG, Mariani D, Fernandes PN, Pereira MD, Panek AD, Eleutherio EC., Biochim. Biophys. Acta 1780(12), 2008
PMID: 18601980
Production of –carotene and acetate in recombinant Escherichia coli with or without mevalonate pathway at different culture temperature or pH
Nguyen, Biotechnol. Bioproc. Eng. 17(), 2012
Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery
Nitayavardhana, Biores. Technol. 102(), 2011
NMR and quantum chemical study on the OH...pi and CH...O interactions between trehalose and unsaturated fatty acids: implication for the mechanism of antioxidant function of trehalose.
Oku K, Watanabe H, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y, Komori M, Inoue Y, Sakurai M., J. Am. Chem. Soc. 125(42), 2003
PMID: 14558821
Enhanced trehalose production improves growth of Escherichia coli under osmotic stress.
Purvis JE, Yomano LP, Ingram LO., Appl. Environ. Microbiol. 71(7), 2005
PMID: 16000787
Characterization of crude glycerol from biodiesel production from multiple feedstocks
Thompson, Appl. Eng. Agr. 22(), 2006
Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013.
Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C., Appl. Microbiol. Biotechnol. 93(3), 2011
PMID: 22202963
Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response.
Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJ., Yeast 27(12), 2010
PMID: 20632327
Value-added uses for crude glycerol--a byproduct of biodiesel production.
Yang F, Hanna MA, Sun R., Biotechnol Biofuels 5(), 2012
PMID: 22413907
Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry.
Yazdani SS, Gonzalez R., Curr. Opin. Biotechnol. 18(3), 2007
PMID: 17532205
OxyR regulon controls lipid peroxidation-mediated oxidative stress in Escherichia coli.
Yoon SJ, Park JE, Yang JH, Park JW., J. Biochem. Mol. Biol. 35(3), 2002
PMID: 12297013
Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli.
Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW., J. Biotechnol. 140(3-4), 2009
PMID: 19428716
Molecular effect of FadD on the regulation and metabolism of fatty acid in Escherichia coli.
Zhang H, Wang P, Qi Q., FEMS Microbiol. Lett. 259(2), 2006
PMID: 16734787

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23831895
PubMed | Europe PMC

Suchen in

Google Scholar