Silencing of the sulfur rich alpha-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites

Zoerb C, Becker D, Hasler M, Muehling K, Gödde V, Niehaus K, Geilfus C-M (2013)
Frontiers in Plant Science 4.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ; ; ; ;
Abstract / Bemerkung
Wheat is an important source of proteins and metabolites for human and animal nutrition. To assess the nutritional quality of wheat products, various protein and diverse metabolites have to be evaluated. The grain storage protein family of the alpha-gliadins are suggested to be the primary initiator of the inflammatory response to gluten in Celiac disease patients. With the technique of RNAi, the alpha-gliadin storage protein fraction in wheat grains was recently knocked down. From a patient's perspective, this is a desired approach, however, this study aims to evaluate whether such a down-regulation of these problematic alpha-gliadins also has unintended side-effects on other plant metabolites. Such uncontrolled and unknown arbitrary effects on any metabolite in plants designated for food production would surely represent an avoidable risk for the consumer. In general, alpha-gliadins are rich in sulfur, making their synthesis and content depended of the sulfur supply. For this reason, the influence of the application of increasing sulfur amounts on the metabolome of alpha-gliadin-deficient wheat was additionally investigated because it might be possible that e.g., considerable high/low amounts of S might increase or even induce such unintended effects that are not observable under moderate S nutrition. By silencing the alpha-gliadin genes, a recently developed wheat line that lacks the set of 75 corresponding alpha-gliadin proteins has become available. The plants were subsequently tested for RNAi-induced effects on metabolites that were not directly attributable to the specific effects of the RNAi-approach on the alpha-gliadin proteins. For this, GC-MS-based metabolite profiles were recorded. A comparison of wild type with gliadin-deficient plants cultivated in pot experiments revealed no differences in all 109 analyzed metabolites, regardless of the S-nutritional status. No unintended effects attributable to the RNAi-based specific genetic deletion of a storage protein fraction were observed.
Stichworte
sulfur; gliadin; Celiac disease; wheat; metabolites; GC-MS
Erscheinungsjahr
2013
Zeitschriftentitel
Frontiers in Plant Science
Band
4
ISSN
1664-462X
eISSN
1664-462X
Page URI
https://pub.uni-bielefeld.de/record/2664432

Zitieren

Zoerb C, Becker D, Hasler M, et al. Silencing of the sulfur rich alpha-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites. Frontiers in Plant Science. 2013;4.
Zoerb, C., Becker, D., Hasler, M., Muehling, K., Gödde, V., Niehaus, K., & Geilfus, C. - M. (2013). Silencing of the sulfur rich alpha-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00369
Zoerb, C., Becker, D., Hasler, M., Muehling, K., Gödde, V., Niehaus, K., and Geilfus, C. - M. (2013). Silencing of the sulfur rich alpha-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites. Frontiers in Plant Science 4.
Zoerb, C., et al., 2013. Silencing of the sulfur rich alpha-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites. Frontiers in Plant Science, 4.
C. Zoerb, et al., “Silencing of the sulfur rich alpha-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites”, Frontiers in Plant Science, vol. 4, 2013.
Zoerb, C., Becker, D., Hasler, M., Muehling, K., Gödde, V., Niehaus, K., Geilfus, C.-M.: Silencing of the sulfur rich alpha-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites. Frontiers in Plant Science. 4, (2013).
Zoerb, Christian, Becker, Dirk, Hasler, Mario, Muehling, Karlh., Gödde, Victoria, Niehaus, Karsten, and Geilfus, Christoph-Martin. “Silencing of the sulfur rich alpha-gliadin storage protein family in wheat grains (Triticum aestivum L.) causes no unintended side-effects on other metabolites”. Frontiers in Plant Science 4 (2013).

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24062763
PubMed | Europe PMC

Suchen in

Google Scholar