Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe

Fujiwara T, Kazawa T, Haupt S, Kanzaki R (2014)
PLoS ONE 9(2): e89132.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fujiwara, T; Kazawa, T; Haupt, StephanUniBi; Kanzaki, R
Abstract / Bemerkung
Although odorant concentration-response characteristics of olfactory neurons have been widely investigated in a variety of animal species, the effect of odorant concentration on neural processing at circuit level is still poorly understood. Using calcium imaging in the silkmoth (Bombyx mori) pheromone processing circuit of the antennal lobe (AL), we studied the effect of odorant concentration on second-order projection neuron (PN) responses. While PN calcium responses of dendrites showed monotonic increases with odorant concentration, calcium responses of somata showed decreased responses at higher odorant concentrations due to postsynaptic inhibition. Simultaneous calcium imaging and electrophysiology revealed that calcium responses of PN somata but not dendrites reflect spiking activity. Inhibition shortened spike response duration rather than decreasing peak instantaneous spike frequency (ISF). Local interneurons (LNs) that were specifically activated at high odorant concentrations at which PN responses were suppressed are the putative source of inhibition. Our results imply the existence of an intraglomerular mechanism that preserves time resolution in olfactory processing over a wide odorant concentration range.
Erscheinungsjahr
2014
Zeitschriftentitel
PLoS ONE
Band
9
Ausgabe
2
Art.-Nr.
e89132
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2663527

Zitieren

Fujiwara T, Kazawa T, Haupt S, Kanzaki R. Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe. PLoS ONE. 2014;9(2): e89132.
Fujiwara, T., Kazawa, T., Haupt, S., & Kanzaki, R. (2014). Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe. PLoS ONE, 9(2), e89132. doi:10.1371/journal.pone.0089132
Fujiwara, T, Kazawa, T, Haupt, Stephan, and Kanzaki, R. 2014. “Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe”. PLoS ONE 9 (2): e89132.
Fujiwara, T., Kazawa, T., Haupt, S., and Kanzaki, R. (2014). Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe. PLoS ONE 9:e89132.
Fujiwara, T., et al., 2014. Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe. PLoS ONE, 9(2): e89132.
T. Fujiwara, et al., “Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe”, PLoS ONE, vol. 9, 2014, : e89132.
Fujiwara, T., Kazawa, T., Haupt, S., Kanzaki, R.: Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe. PLoS ONE. 9, : e89132 (2014).
Fujiwara, T, Kazawa, T, Haupt, Stephan, and Kanzaki, R. “Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe”. PLoS ONE 9.2 (2014): e89132.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Fat Body Organ Culture System in Aedes Aegypti, a Vector of Zika Virus.
Chung HN, Rodriguez SD, Carpenter VK, Vulcan J, Bailey CD, Nageswara-Rao M, Li Y, Attardo GM, Hansen IA., J Vis Exp (126), 2017
PMID: 28872112
Establishment of tools for neurogenetic analysis of sexual behavior in the silkmoth, Bombyx mori.
Kiya T, Morishita K, Uchino K, Iwami M, Sezutsu H., PLoS One 9(11), 2014
PMID: 25396742
Odorant concentration differentiator for intermittent olfactory signals.
Fujiwara T, Kazawa T, Sakurai T, Fukushima R, Uchino K, Yamagata T, Namiki S, Haupt SS, Kanzaki R., J Neurosci 34(50), 2014
PMID: 25505311

49 References

Daten bereitgestellt von Europe PubMed Central.

Insect odor and taste receptors.
Hallem EA, Dahanukar A, Carlson JR., Annu. Rev. Entomol. 51(), 2006
PMID: 16332206
Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain.
Wang JW, Wong AM, Flores J, Vosshall LB, Axel R., Cell 112(2), 2003
PMID: 12553914
Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum of Antheraea pernyi and Antheraea polyphemus (Saturnidae)
AUTHOR UNKNOWN, 1979
Divisive normalization in olfactory population codes.
Olsen SR, Bhandawat V, Wilson RI., Neuron 66(2), 2010
PMID: 20435004
Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations.
Bhandawat V, Olsen SR, Gouwens NW, Schlief ML, Wilson RI., Nat. Neurosci. 10(11), 2007
PMID: 17922008
Functional Differences between Global Pre- and Postsynaptic Inhibition in the Drosophila Olfactory Circuit.
Oizumi M, Satoh R, Kazama H, Okada M., Front Comput Neurosci 6(), 2012
PMID: 22470334
Active sampling and decision making in Drosophila chemotaxis.
Gomez-Marin A, Stephens GJ, Louis M., Nat Commun 2(), 2011
PMID: 21863008
Mechanisms of olfactory discrimination: converging evidence for common principles across phyla.
Hildebrand JG, Shepherd GM., Annu. Rev. Neurosci. 20(), 1997
PMID: 9056726
A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori
AUTHOR UNKNOWN, 2011
Functional specialization of olfactory glomeruli in a moth.
Hansson BS, Ljungberg H, Hallberg E, Lofstedt C., Science 256(5061), 1992
PMID: 1598574
Dose-dependent response characteristics of antennal lobe neurons in the male moth Agrotis segetum (Lepidoptera: Noctuidae)
AUTHOR UNKNOWN, 1997
Ca2+ imaging of identifiable neurons labeled by electroporation in insect brains.
Fujiwara T, Kazawa T, Haupt SS, Kanzaki R., Neuroreport 20(12), 2009
PMID: 19550361
Olfactory information processing in the Drosophila antennal lobe: anything goes?
Silbering AF, Okada R, Ito K, Galizia CG., J. Neurosci. 28(49), 2008
PMID: 19052198
Mechanisms of dendritic calcium signaling in fly neurons.
Oertner TG, Brotz TM, Borst A., J. Neurophysiol. 85(1), 2001
PMID: 11152745
Nicotinic acetylcholine currents of cultured Kkenyon cells from the mushroom bodies of the honey bee Aapis mellifera.
Goldberg F, Grunewald B, Rosenboom H, Menzel R., J. Physiol. (Lond.) 514 ( Pt 3)(), 1999
PMID: 9882748
Separation of voltage- and ligand-gated calcium influx in locust neurons by optical imaging.
Oertner TG, Single S, Borst A., Neurosci. Lett. 274(2), 1999
PMID: 10553946
Mating-induced differential coding of plant odour and sex pheromone in a male moth.
Barrozo RB, Jarriault D, Deisig N, Gemeno C, Monsempes C, Lucas P, Gadenne C, Anton S., Eur. J. Neurosci. 33(10), 2011
PMID: 21488987
Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus.
Zube C, Kleineidam CJ, Kirschner S, Neef J, Rossler W., J. Comp. Neurol. 506(3), 2008
PMID: 18041786
Dose-response characteristics of glomerular activity in the moth antennal lobe.
Carlsson MA, Hansson BS., Chem. Senses 28(4), 2003
PMID: 12771013
Signal propagation in Drosophila central neurons.
Gouwens NW, Wilson RI., J. Neurosci. 29(19), 2009
PMID: 19439602
Differential odor processing in two olfactory pathways in the honeybee.
Yamagata N, Schmuker M, Szyszka P, Mizunami M, Menzel R., Front Syst Neurosci 3(), 2009
PMID: 20198105
Propagation of olfactory information in Drosophila.
Root CM, Semmelhack JL, Wong AM, Flores J, Wang JW., Proc. Natl. Acad. Sci. U.S.A. 104(28), 2007
PMID: 17596338
Activity-dependent gating of lateral inhibition in the mouse olfactory bulb.
Arevian AC, Kapoor V, Urban NN., Nat. Neurosci. 11(1), 2007
PMID: 18084286
Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb.
Yokoi M, Mori K, Nakanishi S., Proc. Natl. Acad. Sci. U.S.A. 92(8), 1995
PMID: 7724568
Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.
Shao Z, Puche AC, Liu S, Shipley MT., J. Neurophysiol. 108(3), 2012
PMID: 22592311
Odor information processing by the olfactory bulb analyzed in gene-targeted mice.
Tan J, Savigner A, Ma M, Luo M., Neuron 65(6), 2010
PMID: 20346765
A circuit supporting concentration-invariant odor perception in Drosophila.
Asahina K, Louis M, Piccinotti S, Vosshall LB., J. Biol. 8(1), 2009
PMID: 19171076
Frequency coding by central olfactory neurons in the sphinx moth Manduca sexta
AUTHOR UNKNOWN, 1988
Odor plumes and how insects use them
AUTHOR UNKNOWN, 1992
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24586546
PubMed | Europe PMC

Suchen in

Google Scholar