Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function

Francke M, Kreysing M, Mack A, Engelmann J, Karl A, Makarov F, Guck J, Kolle M, Wolburg H, Pusch R, von der Emde G, et al. (2014)
Progress in Retinal and Eye Research 38: 43-69.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor/in
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
This article presents a summary and critical review of what is known about the 'grouped retina', a peculiar type of retinal organization in fish in which groups of photoreceptor cell inner and outer segments are arranged in spatially separated bundles. In most but not all cases, these bundles are embedded in light-reflective cups that are formed by the retinal pigment epithelial cells. These cups constitute a specialized type of retinal tapetum (i.e., they are biological 'mirrors' that cause eye shine) and appear to be optimized for different purposes in different fishes. Generally, the large retinal pigment epithelial cells are filled with light-reflecting photonic crystals that consist of guanine, uric acid, or pteridine depending on species, and which ensure that the incoming light becomes directed onto the photoreceptor outer segments. This structural specialization has so far been found in representatives of 17 fish families; of note, not all members of a given family must possess a grouped retina, and the 17 families are not all closely related to each other. In many cases (e.g., in Osteoglossomorpha and Aulopiformes) the inner surface of the cup is formed by three to four layers of strikingly regularly shaped and spaced guanine platelets acting as an optical multilayer. It has been estimated that this provides an up to 10fold increase of the incident light intensity. In certain deep-sea fish (many Aulopiformes and the Polymixidae), small groups of rods are embedded in such 'parabolic mirrors'; most likely, this is an adaptation to the extremely low light intensities available in their habitat. Some of these fishes additionally possess similar tapetal cups that surround individual cones and, very likely, also serve as amplifiers of the weak incident light. In the Osteoglossomorpha, however, that inhabit the turbid water of rivers or streams, the structure of the cups is more complex and undergoes adaptation-dependent changes. At dim daylight, probably representing the usual environmental conditions of the fish, the outer segments of up to 30 cone cells are placed at the bottom of the cup where light intensity is maximized. Strikingly, however, a large number of rod receptor cells are positioned behind each mirroring cup. This peculiar arrangement (i) allows vision at deep red wavelenghts, (ii) matches the sensitivity of rod and cone photoreceptors, and (iii) facilitates the detection of low-contrast and color-mixed stimuli, within the dim, turbid habitat. Thus, for these fish the grouped retina appears to aid in reliable and quick detection of large, fast moving, biologically relevant stimuli such as predators. Overall, the grouped retina appears as a peculiar type of general retinal specialization in a variety of fish species that is adaptive in particular habitats such as turbid freshwater but also the deep-sea. The authors were prompted to write this review by working on the retina of Gnathonemus petersii; the data resulting from this work (Landsberger et al., 2008; Kreying et al., 2012) are included in the present review. (C) 2013 Elsevier Ltd. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
Progress in Retinal and Eye Research
Band
38
Seite(n)
43-69
ISSN
PUB-ID

Zitieren

Francke M, Kreysing M, Mack A, et al. Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in Retinal and Eye Research. 2014;38:43-69.
Francke, M., Kreysing, M., Mack, A., Engelmann, J., Karl, A., Makarov, F., Guck, J., et al. (2014). Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in Retinal and Eye Research, 38, 43-69. doi:10.1016/j.preteyeres.2013.10.001
Francke, M., Kreysing, M., Mack, A., Engelmann, J., Karl, A., Makarov, F., Guck, J., Kolle, M., Wolburg, H., Pusch, R., et al. (2014). Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in Retinal and Eye Research 38, 43-69.
Francke, M., et al., 2014. Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in Retinal and Eye Research, 38, p 43-69.
M. Francke, et al., “Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function”, Progress in Retinal and Eye Research, vol. 38, 2014, pp. 43-69.
Francke, M., Kreysing, M., Mack, A., Engelmann, J., Karl, A., Makarov, F., Guck, J., Kolle, M., Wolburg, H., Pusch, R., von der Emde, G., Schuster, S., Wagner, H.-J., Reichenbach, A.: Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in Retinal and Eye Research. 38, 43-69 (2014).
Francke, Mike, Kreysing, Moritz, Mack, Andreas, Engelmann, Jacob, Karl, Anett, Makarov, Felix, Guck, Jochen, Kolle, Mathias, Wolburg, Hartwig, Pusch, Roland, von der Emde, Gerhard, Schuster, Stefan, Wagner, Hans-Joachim, and Reichenbach, Andreas. “Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function”. Progress in Retinal and Eye Research 38 (2014): 43-69.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Mormyrid Optic Tectum Is a Topographic Interface for Active Electrolocation and Visual Sensing.
Zeymer M, von der Emde G, Wullimann MF., Front Neuroanat 12(), 2018
PMID: 30327593
Complete mitochondrial genome of blackedge greeneye Chlorophthalmus nigromarginatus (Aulopiformes, Chlorophthalmidae).
Zhang X, Liu QH, Guo LM, Ding SX., Mitochondrial DNA A DNA Mapp Seq Anal 27(4), 2016
PMID: 26024131
Cross-modal object recognition and dynamic weighting of sensory inputs in a fish.
Schumacher S, Burt de Perera T, Thenert J, von der Emde G., Proc Natl Acad Sci U S A 113(27), 2016
PMID: 27313211

90 References

Daten bereitgestellt von Europe PubMed Central.


Ali, 1976
Grouped, stacked rods and tapeta lucida in the retina of Japanese anchovy Engraulis japonicus
Awaiwanont, Fischeries Sci. 67(5), 2001
On the eye of the Goldeye Hiodon alosoides (Teleostei: hiodontidae)
Best, J. Zool. 188(3), 1979
Development of the retinal tapetum lucidum of the walleye (Stizostedion vitreum vitreum).
Braekevelt CR, McIntyre DB, Ward FJ., Histol. Histopathol. 4(1), 1989
PMID: 2520447
Die Tiefseefische. Ii. Anatomischer Teil
Brauer, 1906
Landmark learning in bees. Experiments and models
Cartwright, J. Comp. Physiol. 151(), 1983
Making learning easy: the acquisition of visual information during orientation flights of solitary wasps
Collett, J. Comp. Physiol. A. 177(), 1995
Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina
Connaughton, J. Comp. Neurol. 477(), 2004

Darwin, 1859
Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas
Dearry, J. Gen. Physiol. 83(4), 1984
Reflexion of light by external surfaces of the herring, Clupea harengus
Denton, J. Mar. Biol. Ass. 45(03), 1965
On the visual pigments of deep-sea fish
Douglas, J. Fish. Biol. 50(1), 1997
The eyes of deep-sea fish. I: lens pigmentation, tapeta and visual pigments
Douglas, Prog. Retina Eye Res. 17(4), 1998
Cone types and cone arrangements in teleost retinae
Engström, Acta Zool. 44(1–2), 1963
Vertebrate receptor optics and orientation.
Enoch JM., Doc Ophthalmol 48(2), 1980
PMID: 6995055
Mind the gap: the minimal detectable separation distance between two objects during active electrolocation
Fechler, J. Fish Biol. 81(), 2012
Zur mikroskopischen Anatomie der Mormyriden
Franz, Zool. Jahrb., Abt. Allgem. Zool. Physiol. Tiere 42(), 1921
Retinal tapetum containing discrete reflectors and photoreceptors in the bathypelagic teleost Omosudis lowei
Frederiksen, Vidensk Meddr Dansk Naturh Foren 139(), 1976
Die Veränderungen der Netzhaut durch Licht
Garten, 1907
Fish vision and the detection of planktonic prey.
Hairston NG Jr, Li KT, Easter SS Jr., Science 218(4578), 1982
PMID: 7146908
Over oogleden en fornices conjunctivae bij tetostomi
Hein, Tijds. D. Nederl Dierk. Vereen, Ser. 2(Dl.12), 1913
The structure of anchovy outer retinae (Engraulididae, Clupeiformes) – a comparative light- and electron-microscopic study using museum-stored material
Heß, J. Morphol. 267(11), 2006
Electrical perception and communication
Hopkins, 2009
Formation of photoreceptors in larval and adult goldfish
Johns, J. Neurosci. 2(2), 1982
Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems
Kirk, Hydrobiologia 125(1), 1985
Structure and spectral sensitivity of photoreceptors of two anchovy species: Engraulis japonicus and Engraulis encrasicolus
Kondrashev, Vis. Res. 68(), 2012
Photonic crystal light collectors in fish retina improve vision in turbid water.
Kreysing M, Pusch R, Haverkate D, Landsberger M, Engelmann J, Ruiter J, Mora-Ferrer C, Ulbricht E, Grosche J, Franze K, Streif S, Schumacher S, Makarov F, Kacza J, Guck J, Wolburg H, Bowmaker JK, von der Emde G, Schuster S, Wagner HJ, Reichenbach A, Francke M., Science 336(6089), 2012
PMID: 22745429
Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup.
Lamb TD, Collin SP, Pugh EN Jr., Nat. Rev. Neurosci. 8(12), 2007
PMID: 18026166
The physics and biology of animal reflectors.
Land MF., Prog. Biophys. Mol. Biol. 24(), 1972
PMID: 4581858

Land, 2002
Dim light vision – morphological and functional adaptations of the eye of the mormyrid fish, Gnathomenus petersii
Landsberger, J. Physiol. Paris 102(4–6), 2008
An analysis of retinal receptor orientation. I. Angular relationship of neighboring photoreceptors
Laties, Invest. Ophthalmol. Vis. Sci. 10(1), 1971
Retinal anatomy in some scopelarchid deep-sea fishes
Locket, Proc. R. Soc. Lond. B Biol. Sci. 178(51), 1971
Adaptations to the deep-sea environment
Locket, 1977
The neuronal organization of the retina.
Masland RH., Neuron 76(2), 2012
PMID: 23083731
A comparison of the retina of the mormyrids with that of various other teleosts
McEwan, Acta Zool. 19(3), 1938

Michaelson, 1954

Moller, 1995
Notes on ethology and ecology of the Swashi River mormyrids (Lake Kainji, Nigeria)
Moller, Behav. Ecol. Sociobiol. 4(4), 1979
The retinae of two north American teleosts, with special references to their tapeta lucida
Moore, J. Comp. Neurol. 80(3), 1944
Dichromats detect colour-camouflaged objects that are not detected by trichromats.
Morgan MJ, Adam A, Mollon JD., Proc. Biol. Sci. 248(1323), 1992
PMID: 1354367
Fishes of Iguidi River - a small forest stream in South-East Benin
Moritz, Ichthyol. Explor. Freshwaters 21(1), 2010
Ocular anatomy of some deep-sea teleosts
Munk, 1966
On the eyes of two notosudid teleosts, Scopelosaurus hoedti and Abliesaurus berryi
Munk, Vidensk Meddr Dansk Naturh Foren 138(), 1975
The visual cells and retinal tapetum of the foveate deep-sea fish Scopelosaurus lepidus (Teleostei)
Munk, Zoomorphology 87(1), 1977
Duplex retina in the mesopelagic deep-sea teleost Lestidops affinis (Ege, 1930)
Munk, Acta Zool. 70(3), 1989

Nelson, 2006
Separate processing of "color" and "brightness" in goldfish
Neumeyer, Vis. Res. 31(3), 1991
Unique photoreceptor arrangements in a fish with polarized light discrimination
Novales, J. Comp. Neurol. 519(4), 2011
Food and feeding habits of Gnathonemus pertersii (Osteichthyes: Mormyridae) in Anambra River, Nigeria
Nwani, Int. Aquat. Res. 3(), 2011
The structure of the eye of Sardinops caerulea, Engraulis mordax, and four other pelagic marine teleosts
O’Connell, J. Morphol. 113(2), 1963
Ecological impact of brewery effluent on the Ikpoba River, Nigeria, using the fish communities as bio-indicators
Ogbeibu, J. Aquat. Sci. 17(1), 2002
Studies on the food composition and feeding pattern of fish communities in the Ikpoba River, Southern Nigeria
Ogbeibu, J. Aquat. Sci. 20(2), 2005
The biology and habits of the mormyrid fishes: Gnathonemus longibarbis, Gnathonemus victoriae, Marcusenius grahami, Marcusenius nigricans, Petrocephalus catostoma
Okedi, J. Appl. Ecol. 2(2), 1965

Okedi, 1968
Single and multiple visual pigments in deep-sea fishes
Partridge, J. Mar. Biol. Ass. U.K 72(1), 1992
Faune ichtyologique des eaux douces d'Afrique de l'Ouest
Paugy, 1994
The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis
Pointer, J. Exp. Biol. 210(Pt 16), 2007
Spatial resolution of an eye containing a grouped retina: ganglion cell morphology and tectal physiology of Gnathonemus petersii
Pusch, J. Comp. Neurol. (), 2013
Phylogenetic constraints on retinal organization and development: an Haeckelian perspective
Reichenbach, Prog. Retin. Eye Res. 15(1), 1995

Schultze, 1866
Template-matching describes visual pattern-recognition tasks in the weakly electric fish Gnathonemus petersii
Schuster, J. Exp. Biol. 205(Pt 4), 2002
Fishes with eye shine: functional morphology of guanine type tapetum lucidum
Somiya, Mar. Ecol. Progr. Ser. 2(), 1980
Guanine-Type retinal tapetum of three species of mormyrid fishes
Somiya, Jpn. J. Ichthyol. 36(2), 1989
Fish species diversity as indicator of pollution in Ikpoba River, Benin City, Nigeria
Tawari-Fufeyin, Rev. Fish Biol. Fish. 17(1), 2007
The role of starburst amacrine cells in visual signal processing.
Taylor WR, Smith RG., Vis. Neurosci. 29(1), 2012
PMID: 22310373
Development of retinal architecture in the elopomorph species Megalops atlanticus, Elops saurus and Albula vulpes (Elopomorpha: Teleostei)
Taylor, Contrib. Mar. Sci. 37(), 2005
Direction selectivity in the retina.
Vaney DI, Taylor WR., Curr. Opin. Neurobiol. 12(4), 2002
PMID: 12139988
Über die Glaskörper- und Netzhautgefäße des Aales
Virchow, Morphol. Jahrb 7(), 1882
Capacitance discrimination in electrolocating, weakly electric pulse fish
Von, Naturwissenschaften 80(5), 1993
Finding food: senses involved in foraging for insect larvae in the electric fish Gnathonemus pertersii
Von, J. Exp. Biol. 201(Pt 7), 1998
3-Dimensional scene perception during active electrolocation in a weakly electric pulse fish
Von, Front. Behav. Neurosci. 4(), 2010
Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish
Von, J. Exp. Biol. 210(Pt 17), 2007
Retinal organisation in goldeye and mooneye (Teleostei: hiodontidae).
Wagner HJ, Ali MA., Rev Can Biol 37(2), 1978
PMID: 704982

Walls, 1963
Light penetration and the interrelationships between optical parameters in a turbid subtropical impoundment
Walmsley, Hydrobiologia 70(1–2), 1980
Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation
Warrant, Vis. Res. 39(9), 1999
Vision in the deep sea.
Warrant EJ, Locket NA., Biol Rev Camb Philos Soc 79(3), 2004
PMID: 15366767
Orientation flights of solitary wasps (Cerceris, Sphecidae, Hymenoptera)
Zeil, J. Comp. Physiol. A 172(2), 1993
Tapeta lucida and the organisation of visual cells in teleosts
Zyznar, 1975
An interpretative study of the organization of the visual cells and tapetum lucidum of Stizostedion
Zyznar, Can. J. Zool. 53(), 1975
Uric acid in the tapetum lucidum of mooneyes Hiodon (Hiodontidae Teleostei)
Zyznar, Proc. R. Soc. B: Biol. Sci. 201(1142), 1978

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24157316
PubMed | Europe PMC

Suchen in

Google Scholar