Microscale immobilized enzyme reactors in proteomics: Latest developments

Safdar M, Sproß J, Jaenis J (2014)
Journal of Chromatography A 1324: 1-10.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Safdar, Muhammad; Sproß, JensUniBi; Jaenis, Janne
Abstract / Bemerkung
Enzymatic digestion of proteins is one of the key steps in proteomic analyses. There has been a steady progress in the applied digestion protocols in the past, starting from conventional time-consuming in-solution or in-gel digestion protocols to rapid and efficient methods utilizing different types of microscale enzyme reactors. Application of such microreactors has been proven beneficial due to lower sample consumption, higher sensitivity and straightforward coupling with LC-MS set-ups. Novel stationary phases, immobilization techniques and device formats are being constantly developed and tested to optimize digestion efficiency of proteolytic enzymes. This review focuses on the latest developments associated with the preparation and application of microscale enzyme reactors for proteomics applications since 2008 onwards. A special attention has been paid to the discussion of different stationary phases applied for immobilization purposes. (C) 2013 Elsevier B.V. All rights reserved.
Monolith; Miniaturization; Enzyme immobilization; Enzyme reactor; Proteomics; Microfluidics
Journal of Chromatography A
Page URI


Safdar M, Sproß J, Jaenis J. Microscale immobilized enzyme reactors in proteomics: Latest developments. Journal of Chromatography A. 2014;1324:1-10.
Safdar, M., Sproß, J., & Jaenis, J. (2014). Microscale immobilized enzyme reactors in proteomics: Latest developments. Journal of Chromatography A, 1324, 1-10. doi:10.1016/j.chroma.2013.11.045
Safdar, Muhammad, Sproß, Jens, and Jaenis, Janne. 2014. “Microscale immobilized enzyme reactors in proteomics: Latest developments”. Journal of Chromatography A 1324: 1-10.
Safdar, M., Sproß, J., and Jaenis, J. (2014). Microscale immobilized enzyme reactors in proteomics: Latest developments. Journal of Chromatography A 1324, 1-10.
Safdar, M., Sproß, J., & Jaenis, J., 2014. Microscale immobilized enzyme reactors in proteomics: Latest developments. Journal of Chromatography A, 1324, p 1-10.
M. Safdar, J. Sproß, and J. Jaenis, “Microscale immobilized enzyme reactors in proteomics: Latest developments”, Journal of Chromatography A, vol. 1324, 2014, pp. 1-10.
Safdar, M., Sproß, J., Jaenis, J.: Microscale immobilized enzyme reactors in proteomics: Latest developments. Journal of Chromatography A. 1324, 1-10 (2014).
Safdar, Muhammad, Sproß, Jens, and Jaenis, Janne. “Microscale immobilized enzyme reactors in proteomics: Latest developments”. Journal of Chromatography A 1324 (2014): 1-10.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On-a-chip tryptic digestion of transthyretin: a step toward an integrated microfluidic system for the follow-up of familial transthyretin amyloidosis.
Bataille J, Viodé A, Pereiro I, Lafleur JP, Varenne F, Descroix S, Becher F, Kutter JP, Roesch C, Poüs C, Taverna M, Pallandre A, Smadja C, Le Potier I., Analyst 143(5), 2018
PMID: 29383369
Multi-lumen capillary based trypsin micro-reactor for the rapid digestion of proteins.
Currivan SA, Chen WQ, Wilson R, Sanz Rodriguez E, Upadhyay N, Connolly D, Nesterenko PN, Paull B., Analyst 143(20), 2018
PMID: 30221288
Performance comparison of three trypsin columns used in liquid chromatography.
Šlechtová T, Gilar M, Kalíková K, Moore SM, Jorgenson JW, Tesařová E., J Chromatogr A 1490(), 2017
PMID: 28215403
Advances in microscale separations towards nanoproteomics applications.
Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ., J Chromatogr A 1523(), 2017
PMID: 28765000
Use of monolithic supports for high-throughput protein and peptide separation in proteomics.
Andjelković U, Tufegdžić S, Popović M., Electrophoresis 38(22-23), 2017
PMID: 28906564
Advances in monoliths and related porous materials for microfluidics.
Knob R, Sahore V, Sonker M, Woolley AT., Biomicrofluidics 10(3), 2016
PMID: 27190564
Nano-LC in proteomics: recent advances and approaches.
Wilson SR, Vehus T, Berg HS, Lundanes E., Bioanalysis 7(14), 2015
PMID: 26270786
A new sample preparation method for the absolute quantitation of a target proteome using (18)O labeling combined with multiple reaction monitoring mass spectrometry.
Li J, Zhou L, Wang H, Yan H, Li N, Zhai R, Jiao F, Hao F, Jin Z, Tian F, Peng B, Zhang Y, Qian X., Analyst 140(4), 2015
PMID: 25568899
Proteomics beyond trypsin.
Tsiatsiani L, Heck AJ., FEBS J 282(14), 2015
PMID: 25823410
Rational synthesis of novel recyclable Fe₃O₄@MOF nanocomposites for enzymatic digestion.
Zhao M, Zhang X, Deng C., Chem Commun (Camb) 51(38), 2015
PMID: 25869528
Open tubular lab-on-column/mass spectrometry for targeted proteomics of nanogram sample amounts.
Hustoft HK, Vehus T, Brandtzaeg OK, Krauss S, Greibrokk T, Wilson SR, Lundanes E., PLoS One 9(9), 2014
PMID: 25222838

118 References

Daten bereitgestellt von Europe PubMed Central.

Miniaturization in functional genomics and proteomics.
Sauer S, Lange BM, Gobom J, Nyarsik L, Seitz H, Lehrach H., Nat. Rev. Genet. 6(6), 2005
PMID: 15931170

Ali, Chromatographia 69(), 2009
Microfluidic diagnostic technologies for global public health.
Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH., Nature 442(7101), 2006
PMID: 16871209
Lab-on-a-chip: microfluidics in drug discovery.
Dittrich PS, Manz A., Nat Rev Drug Discov 5(3), 2006
PMID: 16518374
Microfluidics: applications for analytical purposes in chemistry and biochemistry.
Ohno K, Tachikawa K, Manz A., Electrophoresis 29(22), 2008
PMID: 19035399
Silica-based and organic monolithic capillary columns for LC: recent trends in proteomics.
Rozenbrand J, van Bennekom WP., J Sep Sci 34(16-17), 2011
PMID: 21710526

Ohla, Curr. Opin. Chem. Biol. 16(), 2012
Microchip technology in mass spectrometry.
Sikanen T, Franssila S, Kauppila TJ, Kostiainen R, Kotiaho T, Ketola RA., Mass Spectrom Rev 29(3), 2010
PMID: 19514079
Nanoelectrospray emitters: trends and perspective.
Gibson GT, Mugo SM, Oleschuk RD., Mass Spectrom Rev 28(6), 2009
PMID: 19479726
Recent advances in immobilized enzymatic reactors and their applications in proteome analysis.
Ma J, Zhang L, Liang Z, Zhang W, Zhang Y., Anal. Chim. Acta 632(1), 2007
PMID: 19100875
The origins and the future of microfluidics.
Whitesides GM., Nature 442(7101), 2006
PMID: 16871203

Ye, Trends Anal. Chem. 26(), 2007

Capelo, Anal. Chem. Acta 650(), 2009
Immobilization strategies to develop enzymatic biosensors.
Sassolas A, Blum LJ, Leca-Bouvier BD., Biotechnol. Adv. 30(3), 2011
PMID: 21951558
Immobilized microfluidic enzymatic reactors.
Krenkova J, Foret F., Electrophoresis 25(21-22), 2004
PMID: 15565708

Ma, Trends Anal. Chem. 30(), 2011
Solubilized collagen fibril as a supporting material for enzyme immobilization.
Gondo S, Koya H., Biotechnol. Bioeng. 20(12), 1978
PMID: 365258

Amankwa, Anal. Chem. 64(), 1992

Amankwa, Anal. Chem. 65(), 1993

Adamczak, Food Technol. Biotechnol. 42(), 2004
Immobilised enzymes: science or art?
Cao L., Curr Opin Chem Biol 9(2), 2005
PMID: 15811808
Multiple aspects of the interaction of biomacromolecules with inorganic surfaces.
Fenoglio I, Fubini B, Ghibaudi EM, Turci F., Adv. Drug Deliv. Rev. 63(13), 2011
PMID: 21871508
Advances in enzyme immobilisation
Brady D, Jordaan J., Biotechnol. Lett. 31(11), 2009
PMID: IND44271575

Svec, Anal. Chem. 64(), 1992
Molded rigid polymer monoliths as separation media for capillary electrochromatography.
Peters EC, Petro M, Svec F, Frechet JM., Anal. Chem. 69(17), 1997
PMID: 9286168
Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography.
Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N., Anal. Chem. 68(19), 1996
PMID: 21619283

Liu, Int. J. Mass Spectrom. 259(), 2007
Solid-phase acylating reagents in new format: macroporous polymer disks.
Tripp JA, Svec F, Frechet JM., J Comb Chem 3(6), 2001
PMID: 11703158
Monolithic columns in high-performance liquid chromatography.
Guiochon G., J Chromatogr A 1168(1-2), 2007
PMID: 17640660

Svec, Anal. Chem. 78(), 2006
Inorganic monoliths in separation science: a review.
Walsh Z, Paull B, Macka M., Anal. Chim. Acta 750(), 2012
PMID: 23062427
Development of silica-based stationary phases for high-performance liquid chromatography.
Qiu H, Liang X, Sun M, Jiang S., Anal Bioanal Chem 399(10), 2011
PMID: 21221544
Synthesis of a monolithic, micro-immobilised enzyme reactor via click-chemistry.
Celebi B, Bayraktar A, Tuncel A., Anal Bioanal Chem 403(9), 2012
PMID: 22580426
Monolithic media for applications in affinity chromatography.
Sproß J, Sinz A., J Sep Sci 34(16-17), 2011
PMID: 21793209
Ultrafast microwave-assisted in-tip digestion of proteins.
Hahn HW, Rainer M, Ringer T, Huck CW, Bonn GK., J. Proteome Res. 8(9), 2009
PMID: 19639939
Multidimensional nano-HPLC coupled with tandem mass spectrometry for analyzing biotinylated proteins.
Sproß J, Brauch S, Mandel F, Wagner M, Buckenmaier S, Westermann B, Sinz A., Anal Bioanal Chem 405(7), 2012
PMID: 22644144
Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis.
Liang Y, Tao D, Ma J, Sun L, Liang Z, Zhang L, Zhang Y., J Chromatogr A 1218(20), 2011
PMID: 21450299
Monolithic stationary phases for liquid chromatography and capillary electrochromatography.
Zou H, Huang X, Ye M, Luo Q., J Chromatogr A 954(1-2), 2002
PMID: 12058917
Silica monolithic columns: synthesis, characterisation and applications to the analysis of biological molecules.
Rieux L, Niederlander H, Verpoorte E, Bischoff R., J Sep Sci 28(14), 2005
PMID: 16224956
Monolithic silica columns for high-efficiency chromatographic separations.
Tanak N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T., J Chromatogr A 965(1-2), 2002
PMID: 12236535
Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity.
Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y., Anal. Chem. 80(8), 2008
PMID: 18333626
Integrated device for online sample buffer exchange, protein enrichment, and digestion.
Sun L, Ma J, Qiao X, Liang Y, Zhu G, Shan Y, Liang Z, Zhang L, Zhang Y., Anal. Chem. 82(6), 2010
PMID: 20151663
Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors.
Zhang P, Gao M, Zhu S, Lei J, Zhang X., J Chromatogr A 1218(47), 2011
PMID: 22024345
Potential applications of enzymes immobilized on/in nano materials: A review.
Ansari SA, Husain Q., Biotechnol. Adv. 30(3), 2011
PMID: 21963605

Zhou, Top. Catal. 55(), 2012

Percy, Anal. Chem. Acta 657(), 2010
Total on-line analysis of a target protein from plasma by immunoextraction, digestion and liquid chromatography-mass spectrometry.
Cingoz A, Hugon-Chapuis F, Pichon V., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(2), 2009
PMID: 19665945
Characterization of efficient proteolysis by trypsin loaded macroporous silica.
Guo W, Bi H, Qiao L, Wan J, Qian K, Girault HH, Liu B., Mol Biosyst 7(10), 2011
PMID: 21804973
Size-selective proteolysis on mesoporous silica-based trypsin nanoreactor for low-MW proteome analysis.
Min Q, Wu R, Zhao L, Qin H, Ye M, Zhu JJ, Zou H., Chem. Commun. (Camb.) 46(33), 2010
PMID: 20664869
A novel magnetic mesoporous silica packed S-shaped microfluidic reactor for online proteolysis of low-MW proteome.
Min Q, Zhang X, Wu R, Zou H, Zhu JJ., Chem. Commun. (Camb.) 47(38), 2011
PMID: 21863173
Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis.
Petkova GA, Zaruba CK, Zvatora P, Kral V., Nanoscale Res Lett 7(1), 2012
PMID: 22655978
Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors.
Ji J, Zhang Y, Zhou X, Kong J, Tang Y, Liu B., Anal. Chem. 80(7), 2008
PMID: 18321132

Hinterwirth, Anal. Chem. Acta 733(), 2012
On-chip tryptic digest with direct coupling to ESI-MS using magnetic particles.
Le Nel A, Krenkova J, Kleparnik K, Smadja C, Taverna M, Viovy JL, Foret F., Electrophoresis 29(24), 2008
PMID: 19025861
Controlled proteolysis of normal and pathological prion protein in a microfluidic chip.
Le Nel A, Minc N, Smadja C, Slovakova M, Bilkova Z, Peyrin JM, Viovy JL, Taverna M., Lab Chip 8(2), 2008
PMID: 18231669
Bioaffinity magnetic reactor for peptide digestion followed by analysis using bottom-up shotgun proteomics strategy.
Korecka L, Jankovicova B, Krenkova J, Hernychova L, Slovakova M, Le-Nell A, Chmelik J, Foret F, Viovy JL, Bilkova Z., J Sep Sci 31(3), 2008
PMID: 18266262

Sun, Colloids Surf. A 414(), 2012
Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
Jiang B, Yang K, Zhao Q, Wu Q, Liang Z, Zhang L, Peng X, Zhang Y., J Chromatogr A 1254(), 2012
PMID: 22871380

Liu, J. Mater. Chem. B 1(), 2013

Shih, ChemPlusChem 77(), 2012

Ghafourifar, Electrophoresis (), 2013
Capillary electrophoresis mass spectrometry coupling with immobilized enzyme electrospray capillaries.
Krenkova J, Kleparnik K, Foret F., J Chromatogr A 1159(1-2), 2007
PMID: 17376460
Development of an open-tubular trypsin reactor for on-line digestion of proteins.
Stigter EC, de Jong GJ, van Bennekom WP., Anal Bioanal Chem 389(6), 2007
PMID: 17899035
Multidigestion in continuous flow tandem protease-immobilized microreactors for proteomic analysis.
Yamaguchi H, Miyazaki M, Kawazumi H, Maeda H., Anal. Biochem. 407(1), 2010
PMID: 20673753

Iosin, Microfluid. Nanofluid. 10(), 2011

Nissilä, Sens. Actuators B 143(), 2009
Development of an automated digestion and droplet deposition microfluidic chip for MALDI-TOF MS.
Lee J, Musyimi HK, Soper SA, Murray KK., J. Am. Soc. Mass Spectrom. 19(7), 2008
PMID: 18479934
Rapid fabrication of glass/PDMS hybrid µIMER for high throughput membrane proteomics.
Pereira-Medrano AG, Forster S, Fowler GJ, McArthur SL, Wright PC., Lab Chip 10(24), 2010
PMID: 20949197
Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry.
Ji J, Nie L, Qiao L, Li Y, Guo L, Liu B, Yang P, Girault HH., Lab Chip 12(15), 2012
PMID: 22695710
Facile trypsin immobilization in polymeric membranes for rapid, efficient protein digestion.
Xu F, Wang WH, Tan YJ, Bruening ML., Anal. Chem. 82(24), 2010
PMID: 21087034
Prediction of protein orientation upon immobilization on biological and nonbiological surfaces.
Talasaz AH, Nemat-Gorgani M, Liu Y, Stahl P, Dutton RW, Ronaghi M, Davis RW., Proc. Natl. Acad. Sci. U.S.A. 103(40), 2006
PMID: 17001006
Rapid and enhanced proteolytic digestion using electric-field-oriented enzyme reactor.
Zhou Y, Yi T, Park SS, Chadwick W, Shen RF, Wu WW, Martin B, Maudsley S., J Proteomics 74(7), 2011
PMID: 21338726
Ion-exchange-membrane-based enzyme micro-reactor coupled online with liquid chromatography-mass spectrometry for protein analysis.
Zhou Z, Yang Y, Zhang J, Zhang Z, Bai Y, Liao Y, Liu H., Anal Bioanal Chem 403(1), 2012
PMID: 22349343

Starke, React. Funct. Polym. 73(), 2013

Jagur-Grodzinski, Polym. Adv. Technol. 21(), 2010

Oh, Can. J. Chem. 88(), 2010
Chitosan-based hydrogels for controlled, localized drug delivery.
Bhattarai N, Gunn J, Zhang M., Adv. Drug Deliv. Rev. 62(1), 2009
PMID: 19799949
Digital microfluidic hydrogel microreactors for proteomics.
Luk VN, Fiddes LK, Luk VM, Kumacheva E, Wheeler AR., Proteomics 12(9), 2012
PMID: 22589180
Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis.
Wang S, Chen Z, Yang P, Chen G., Proteomics 8(9), 2008
PMID: 18442168

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 24360812
PubMed | Europe PMC

Suchen in

Google Scholar