Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production

Komati Reddy G, Wendisch VF (2014)
BMC Microbiology 14(1): 54.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Background Corynebacterium glutamicum cg1790/pgk encodes an enzyme active as a 3-phosphoglycerate kinase (PGK) (EC 2.7.2.3) catalyzing phosphoryl transfer from 1,3-biphosphoglycerate (bPG) to ADP to yield 3-phosphoglycerate (3-PG) and ATP in substrate chain phosphorylation. Results C. glutamicum 3-phosphoglycerate kinase was purified to homogeneity from the soluble fraction of recombinant E. coli. PGKHis was found to be active as a homodimer with molecular weight of 104 kDa. The enzyme preferred conditions of pH 7.0 to 7.4 and required Mg2+ for its activity. PGKHis is thermo labile and it has shown maximal activity at 50–65°C. The maximal activity of PGKHis was estimated to be 220 and 150 U mg-1 with KM values of 0.26 and 0.11 mM for 3-phosphoglycerate and ATP, respectively. A 3-phosphoglycerate kinase negative C. glutamicum strain ∆pgk was constructed and shown to lack the ability to grow under glycolytic or gluconeogenic conditions unless PGK was expressed from a plasmid to restore growth. When pgk was overexpressed in L-arginine and L-ornithine production strains the production increased by 8% and by 17.5%, respectively. Conclusion Unlike many bacterial PGKs, C. glutamicum PGK is active as a homodimer. PGK is essential for growth of C. glutamicum with carbon sources requiring glycolysis and gluconeogenesis. Competitive inhibition by ADP reveals the critical role of PGK in gluconeogenesis by energy charge. Pgk overexpression improved the productivity in L-arginine and L-ornithine production strains.
Erscheinungsjahr
2014
Zeitschriftentitel
BMC Microbiology
Band
14
Ausgabe
1
Art.-Nr.
54
ISSN
1471-2180
eISSN
1471-2180
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2659778

Zitieren

Komati Reddy G, Wendisch VF. Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiology. 2014;14(1): 54.
Komati Reddy, G., & Wendisch, V. F. (2014). Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiology, 14(1), 54. doi:10.1186/1471-2180-14-54
Komati Reddy, Gajendar, and Wendisch, Volker F. 2014. “Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production”. BMC Microbiology 14 (1): 54.
Komati Reddy, G., and Wendisch, V. F. (2014). Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiology 14:54.
Komati Reddy, G., & Wendisch, V.F., 2014. Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiology, 14(1): 54.
G. Komati Reddy and V.F. Wendisch, “Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production”, BMC Microbiology, vol. 14, 2014, : 54.
Komati Reddy, G., Wendisch, V.F.: Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiology. 14, : 54 (2014).
Komati Reddy, Gajendar, and Wendisch, Volker F. “Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production”. BMC Microbiology 14.1 (2014): 54.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:21Z
MD5 Prüfsumme
316d60d62c89336a738779b3725f8e20


61 References

Daten bereitgestellt von Europe PubMed Central.

Crystal structure of Plasmodium falciparum phosphoglycerate kinase: evidence for anion binding in the basic patch.
Smith CD, Chattopadhyay D, Pal B., Biochem. Biophys. Res. Commun. 412(2), 2011
PMID: 21798238
Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids.
Stabler N, Oikawa T, Bott M, Eggeling L., J. Bacteriol. 193(7), 2011
PMID: 21257776
Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
Blombach B, Hans S, Bathe B, Eikmanns BJ., Appl. Environ. Microbiol. 75(2), 2008
PMID: 19047397
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2012
PMID: 23199277
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176
Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum.
Jensen JV, Wendisch VF., Microb. Cell Fact. 12(), 2013
PMID: 23806148
Improvement of cell growth and L-lysine production by genetically modified Corynebacterium glutamicum during growth on molasses.
Xu J, Zhang J, Guo Y, Zai Y, Zhang W., J. Ind. Microbiol. Biotechnol. 40(12), 2013
PMID: 24029876
Genetic regulation of Corynebacterium glutamicum metabolism
AUTHOR UNKNOWN, 2006
Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum.
Schwinde JW, Thum-Schmitz N, Eikmanns BJ, Sahm H., J. Bacteriol. 175(12), 1993
PMID: 7685337
3-Phosphoglycerate kinase and triose phosphate isomerase from hyperthermophilic Archaea: features of biochemical thermoadaptation
AUTHOR UNKNOWN, 1998
Purification and characterisation of the phosphoglycerate kinase isoenzymes of Trypanosoma brucei expressed in Escherichia coli.
Zomer AW, Allert S, Chevalier N, Callens M, Opperdoes FR, Michels PA., Biochim. Biophys. Acta 1386(1), 1998
PMID: 9675273
Phosphoglycerate kinase and phosphoglyceromutase from Escherichia coli
AUTHOR UNKNOWN, 1975
Purification and characterization of two isozymes of 3-phosphoglycerate kinase from the mouse.
Pegoraro B, Lee CY., Biochim. Biophys. Acta 522(2), 1978
PMID: 23844
Thermodynamic analysis of the nondenaturational conformational change of baker's yeast phosphoglycerate kinase at 24 degrees C.
Ijeoma O, Hollowell HN, Bodnar MA, Britt BM., Arch. Biochem. Biophys. 478(2), 2008
PMID: 18656441
Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus.
Kirino H, Aoki M, Aoshima M, Hayashi Y, Ohba M, Yamagishi A, Wakagi T, Oshima T., Eur. J. Biochem. 220(1), 1994
PMID: 8119295
Site-directed mutagenesis of proline 204 in the 'hinge' region of yeast phosphoglycerate kinase.
McHarg J, Kelly SM, Price NC, Cooper A, Littlechild JA., Eur. J. Biochem. 259(3), 1999
PMID: 10092885
Communication between the nucleotide site and the main molecular hinge of 3-phosphoglycerate kinase.
Szabo J, Varga A, Flachner B, Konarev PV, Svergun DI, Zavodszky P, Vas M., Biochemistry 47(26), 2008
PMID: 18540639
Purification and characterization of 3-phosphoglycerate kinase from Ehrlich ascites carcinoma cells.
Mukherjee K, Ghosh S, Ray M, Ray S., Indian J. Biochem. Biophys. 39(5), 2002
PMID: 22905379
3-Phosphoglycerate kinase isozymes and genetic variants from mouse
AUTHOR UNKNOWN, 1982
Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp. TACII18.
Bentahir M, Feller G, Aittaleb M, Lamotte-Brasseur J, Himri T, Chessa JP, Gerday C., J. Biol. Chem. 275(15), 2000
PMID: 10753921
Inhibition of phosphoglycerate kinase by products and product homologues.
Larsson-Raznikiewicz M, Arvidsson L., Eur. J. Biochem. 22(4), 1971
PMID: 5128739
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Stolzenberger J, Lindner SN, Wendisch VF., Microbiology (Reading, Engl.) 159(Pt 8), 2013
PMID: 23760818
Untersuchungen zur Glykolyse und zum L-Serin-Stoffwechsel in Corynebacterium glutamicum
AUTHOR UNKNOWN, 2004
Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation.
Omumasaba CA, Okai N, Inui M, Yukawa H., J. Mol. Microbiol. Biotechnol. 8(2), 2004
PMID: 15925900
Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.
Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(4), 2001
PMID: 11565516
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.
Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M., Biotechnol. Prog. 26(2), 2010
PMID: 20014412
Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase.
Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C., J. Biotechnol. 132(2), 2007
PMID: 17624457
Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum (D)-lactate productivity under oxygen deprivation.
Tsuge Y, Yamamoto S, Suda M, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 97(15), 2013
PMID: 23712891
Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions.
Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H., Appl. Environ. Microbiol. 78(12), 2012
PMID: 22504802
Taxonomical studies on glutamic acid producing bacteria
AUTHOR UNKNOWN, 1967
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733

AUTHOR UNKNOWN, 1989
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791

AUTHOR UNKNOWN, 2005
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24593686
PubMed | Europe PMC

Suchen in

Google Scholar