Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice

Michael N, Bischof H-J, Loewel S (2014)
PLoS ONE 9(1): e85225.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Michael, Neethu; Bischof, Hans-JoachimUniBi; Loewel, Siegrid
Abstract / Bemerkung
Large-scale brain activity patterns can be visualized by optical imaging of intrinsic signals (OIS) based on activity-dependent changes in the blood oxygenation level. Another method, flavoprotein autofluorescence imaging (AFI), exploits the mitochondrial flavoprotein autofluorescence, which is enhanced during neuronal activity. In birds, topographic mapping of visual space has been shown in the visual wulst, the avian homologue of the mammalian visual cortex by using OIS. We here applied the AFI method to visualize topographic maps in the visual wulst because with OIS, which depends on blood flow changes, blood vessel artifacts often obscure brain activity maps. We then compared both techniques quantitatively in zebra finches and in C57Bl/6J mice using the same setup and stimulation conditions. In addition to experiments with craniotomized animals, we also examined mice with intact skull (in zebra finches, intact skull imaging is not feasible probably due to the skull construction). In craniotomized animals, retinotopic maps were obtained by both methods in both species. Using AFI, artifacts caused by blood vessels were generally reduced, the magnitude of neuronal activity significantly higher and the retinotopic map quality better than that obtained by OIS in both zebra finches and mice. In contrast, our measurements in non-craniotomized mice did not reveal any quantitative differences between the two methods. Our results thus suggest that AFI is the method of choice for investigations of visual processing in zebra finches. In mice, however, if researchers decide to use the advantages of imaging through the intact skull, they will not be able to exploit the higher signals obtainable by the AFI-method.
Page URI


Michael N, Bischof H-J, Loewel S. Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE. 2014;9(1): e85225.
Michael, N., Bischof, H. - J., & Loewel, S. (2014). Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE, 9(1), e85225. doi:10.1371/journal.pone.0085225
Michael, N., Bischof, H. - J., and Loewel, S. (2014). Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE 9:e85225.
Michael, N., Bischof, H.-J., & Loewel, S., 2014. Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE, 9(1): e85225.
N. Michael, H.-J. Bischof, and S. Loewel, “Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice”, PLoS ONE, vol. 9, 2014, : e85225.
Michael, N., Bischof, H.-J., Loewel, S.: Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE. 9, : e85225 (2014).
Michael, Neethu, Bischof, Hans-Joachim, and Loewel, Siegrid. “Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice”. PLoS ONE 9.1 (2014): e85225.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata).
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Imaging the awake visual cortex with a genetically encoded voltage indicator.
Carandini M, Shimaoka D, Rossi LF, Sato TK, Benucci A, Knöpfel T., J Neurosci 35(1), 2015
PMID: 25568102
Development of new optical imaging systems of oxygen metabolism and simultaneous measurement in hemodynamic changes using awake mice.
Takuwa H, Matsuura T, Nishino A, Sakata K, Tajima Y, Ito H., J Neurosci Methods 237(), 2014
PMID: 25192830
Putting a finishing touch on GECIs.
Rose T, Goltstein PM, Portugues R, Griesbeck O., Front Mol Neurosci 7(), 2014
PMID: 25477779

29 References

Daten bereitgestellt von Europe PubMed Central.

Optical imaging of intrinsic signals: recent developments in the methodology and its applications.
Zepeda A, Arias C, Sengpiel F., J. Neurosci. Methods 136(1), 2004
PMID: 15126041
Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence.
Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R., J. Physiol. (Lond.) 549(Pt 3), 2003
PMID: 12730344
VSDI: a new era in functional imaging of cortical dynamics.
Grinvald A, Hildesheim R., Nat. Rev. Neurosci. 5(11), 2004
PMID: 15496865
Fluorescence monitoring of electrical responses from small neurons and their processes.
Grinvald A, Fine A, Farber IC, Hildesheim R., Biophys. J. 42(2), 1983
PMID: 6860775
Intracellular oxidation-reduction states in vivo.
CHANCE B, COHEN P, JOBSIS F, SCHOENER B., Science 137(3529), 1962
PMID: 13878016
NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices
Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex

Visual circuits of the avian telencephalon: evolutionary implications.
Shimizu T, Bowers AN, Shimizu T., Behav. Brain Res. 98(2), 1999
PMID: 10683106
The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon
Optical imaging of retinotopic maps in a small songbird, the zebra finch.
Keary N, Voss J, Lehmann K, Bischof HJ, Lowel S., PLoS ONE 5(8), 2010
PMID: 20694137

A stereotaxic headholder for small birds.
Bischof HJ., Brain Res. Bull. 7(4), 1981
PMID: 7028213
Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.
Cang J, Kalatsky VA, Lowel S, Stryker MP., Vis. Neurosci. 22(5), 2005
PMID: 16332279
Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.
Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP., Neuron 48(5), 2005
PMID: 16337917
Age-dependent ocular dominance plasticity in adult mice.
Lehmann K, Lowel S., PLoS ONE 3(9), 2008
PMID: 18769674
Screening mouse vision with intrinsic signal optical imaging.
Heimel JA, Hartman RJ, Hermans JM, Levelt CN., Eur. J. Neurosci. 25(3), 2007
PMID: 17328775
Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
Magistretti PJ, Pellerin L., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354(1387), 1999
PMID: 10466143
Lactate: the ultimate cerebral oxidative energy substrate?
Schurr A., J. Cereb. Blood Flow Metab. 26(1), 2006
PMID: 15973352
Cerebral oxygen delivery and consumption during evoked neural activity.
Vazquez AL, Masamoto K, Fukuda M, Kim SG., Front Neuroenergetics 2(), 2010
PMID: 20616881
Functional imaging of primary visual cortex using flavoprotein autofluorescence
Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke.
Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Lowel S., Proc. Natl. Acad. Sci. U.S.A. 108(37), 2011
PMID: 21873250
Spectral Characteristics of Visible Radiation Penetrating into the Brain and Stimulating Extraretinal Photoreceptors: Transmission Recordings in Vertebrates



Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 24400130
PubMed | Europe PMC

Suchen in

Google Scholar