Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice
Michael N, Bischof H-J, Loewel S (2014)
PLoS ONE 9(1): e85225.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Michael, Neethu;
Bischof, Hans-JoachimUniBi;
Loewel, Siegrid
Einrichtung
Abstract / Bemerkung
Large-scale brain activity patterns can be visualized by optical imaging of intrinsic signals (OIS) based on activity-dependent changes in the blood oxygenation level. Another method, flavoprotein autofluorescence imaging (AFI), exploits the mitochondrial flavoprotein autofluorescence, which is enhanced during neuronal activity. In birds, topographic mapping of visual space has been shown in the visual wulst, the avian homologue of the mammalian visual cortex by using OIS. We here applied the AFI method to visualize topographic maps in the visual wulst because with OIS, which depends on blood flow changes, blood vessel artifacts often obscure brain activity maps. We then compared both techniques quantitatively in zebra finches and in C57Bl/6J mice using the same setup and stimulation conditions. In addition to experiments with craniotomized animals, we also examined mice with intact skull (in zebra finches, intact skull imaging is not feasible probably due to the skull construction). In craniotomized animals, retinotopic maps were obtained by both methods in both species. Using AFI, artifacts caused by blood vessels were generally reduced, the magnitude of neuronal activity significantly higher and the retinotopic map quality better than that obtained by OIS in both zebra finches and mice. In contrast, our measurements in non-craniotomized mice did not reveal any quantitative differences between the two methods. Our results thus suggest that AFI is the method of choice for investigations of visual processing in zebra finches. In mice, however, if researchers decide to use the advantages of imaging through the intact skull, they will not be able to exploit the higher signals obtainable by the AFI-method.
Erscheinungsjahr
2014
Zeitschriftentitel
PLoS ONE
Band
9
Ausgabe
1
Art.-Nr.
e85225
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2656790
Zitieren
Michael N, Bischof H-J, Loewel S. Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE. 2014;9(1): e85225.
Michael, N., Bischof, H. - J., & Loewel, S. (2014). Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE, 9(1), e85225. doi:10.1371/journal.pone.0085225
Michael, Neethu, Bischof, Hans-Joachim, and Loewel, Siegrid. 2014. “Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice”. PLoS ONE 9 (1): e85225.
Michael, N., Bischof, H. - J., and Loewel, S. (2014). Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE 9:e85225.
Michael, N., Bischof, H.-J., & Loewel, S., 2014. Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE, 9(1): e85225.
N. Michael, H.-J. Bischof, and S. Loewel, “Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice”, PLoS ONE, vol. 9, 2014, : e85225.
Michael, N., Bischof, H.-J., Loewel, S.: Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice. PLoS ONE. 9, : e85225 (2014).
Michael, Neethu, Bischof, Hans-Joachim, and Loewel, Siegrid. “Flavoprotein Autofluorescence Imaging of Visual System Activity in Zebra Finches and Mice”. PLoS ONE 9.1 (2014): e85225.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
5 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata).
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Imaging the awake visual cortex with a genetically encoded voltage indicator.
Carandini M, Shimaoka D, Rossi LF, Sato TK, Benucci A, Knöpfel T., J Neurosci 35(1), 2015
PMID: 25568102
Carandini M, Shimaoka D, Rossi LF, Sato TK, Benucci A, Knöpfel T., J Neurosci 35(1), 2015
PMID: 25568102
Features of the retinotopic representation in the visual wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata).
Michael N, Löwel S, Bischof HJ., PLoS One 10(4), 2015
PMID: 25853253
Michael N, Löwel S, Bischof HJ., PLoS One 10(4), 2015
PMID: 25853253
Development of new optical imaging systems of oxygen metabolism and simultaneous measurement in hemodynamic changes using awake mice.
Takuwa H, Matsuura T, Nishino A, Sakata K, Tajima Y, Ito H., J Neurosci Methods 237(), 2014
PMID: 25192830
Takuwa H, Matsuura T, Nishino A, Sakata K, Tajima Y, Ito H., J Neurosci Methods 237(), 2014
PMID: 25192830
Putting a finishing touch on GECIs.
Rose T, Goltstein PM, Portugues R, Griesbeck O., Front Mol Neurosci 7(), 2014
PMID: 25477779
Rose T, Goltstein PM, Portugues R, Griesbeck O., Front Mol Neurosci 7(), 2014
PMID: 25477779
29 References
Daten bereitgestellt von Europe PubMed Central.
Optical imaging of intrinsic signals: recent developments in the methodology and its applications.
Zepeda A, Arias C, Sengpiel F., J. Neurosci. Methods 136(1), 2004
PMID: 15126041
Zepeda A, Arias C, Sengpiel F., J. Neurosci. Methods 136(1), 2004
PMID: 15126041
Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence.
Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R., J. Physiol. (Lond.) 549(Pt 3), 2003
PMID: 12730344
Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, Watanabe S, Kouuchi T, Tanaka R., J. Physiol. (Lond.) 549(Pt 3), 2003
PMID: 12730344
VSDI: a new era in functional imaging of cortical dynamics.
Grinvald A, Hildesheim R., Nat. Rev. Neurosci. 5(11), 2004
PMID: 15496865
Grinvald A, Hildesheim R., Nat. Rev. Neurosci. 5(11), 2004
PMID: 15496865
Fluorescence monitoring of electrical responses from small neurons and their processes.
Grinvald A, Fine A, Farber IC, Hildesheim R., Biophys. J. 42(2), 1983
PMID: 6860775
Grinvald A, Fine A, Farber IC, Hildesheim R., Biophys. J. 42(2), 1983
PMID: 6860775
New paradigm for optical imaging: temporally encoded maps of intrinsic signal.
Kalatsky VA, Stryker MP., Neuron 38(4), 2003
PMID: 12765606
Kalatsky VA, Stryker MP., Neuron 38(4), 2003
PMID: 12765606
Intracellular oxidation-reduction states in vivo.
CHANCE B, COHEN P, JOBSIS F, SCHOENER B., Science 137(3529), 1962
PMID: 13878016
CHANCE B, COHEN P, JOBSIS F, SCHOENER B., Science 137(3529), 1962
PMID: 13878016
NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices
AUTHOR UNKNOWN, 2003
AUTHOR UNKNOWN, 2003
Quantification of the content of fluorescent flavoproteins in mitochondria from liver, kidney cortex, skeletal muscle, and brain.
Kunz WS, Gellerich FN., Biochem. Med. Metab. Biol. 50(1), 1993
PMID: 8373630
Kunz WS, Gellerich FN., Biochem. Med. Metab. Biol. 50(1), 1993
PMID: 8373630
Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex
AUTHOR UNKNOWN, 2006
AUTHOR UNKNOWN, 2006
AUTHOR UNKNOWN, 0
On the structure and function of the tectofugal visual pathway in laterally eyed birds.
Bischof HJ, Watanabe S., Eur J Morphol 35(4), 1997
PMID: 9290933
Bischof HJ, Watanabe S., Eur J Morphol 35(4), 1997
PMID: 9290933
Visual circuits of the avian telencephalon: evolutionary implications.
Shimizu T, Bowers AN, Shimizu T., Behav. Brain Res. 98(2), 1999
PMID: 10683106
Shimizu T, Bowers AN, Shimizu T., Behav. Brain Res. 98(2), 1999
PMID: 10683106
The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon
AUTHOR UNKNOWN, 1969
AUTHOR UNKNOWN, 1969
Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices?
Medina L, Reiner A., Trends Neurosci. 23(1), 2000
PMID: 10631781
Medina L, Reiner A., Trends Neurosci. 23(1), 2000
PMID: 10631781
Optical imaging of retinotopic maps in a small songbird, the zebra finch.
Keary N, Voss J, Lehmann K, Bischof HJ, Lowel S., PLoS ONE 5(8), 2010
PMID: 20694137
Keary N, Voss J, Lehmann K, Bischof HJ, Lowel S., PLoS ONE 5(8), 2010
PMID: 20694137
AUTHOR UNKNOWN, 0
Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.
Cang J, Kalatsky VA, Lowel S, Stryker MP., Vis. Neurosci. 22(5), 2005
PMID: 16332279
Cang J, Kalatsky VA, Lowel S, Stryker MP., Vis. Neurosci. 22(5), 2005
PMID: 16332279
Development of precise maps in visual cortex requires patterned spontaneous activity in the retina.
Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP., Neuron 48(5), 2005
PMID: 16337917
Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP., Neuron 48(5), 2005
PMID: 16337917
Vision and visual cortical maps in mice with a photoreceptor synaptopathy: reduced but robust visual capabilities in the absence of synaptic ribbons.
Goetze B, Schmidt KF, Lehmann K, Altrock WD, Gundelfinger ED, Lowel S., Neuroimage 49(2), 2009
PMID: 19837175
Goetze B, Schmidt KF, Lehmann K, Altrock WD, Gundelfinger ED, Lowel S., Neuroimage 49(2), 2009
PMID: 19837175
Age-dependent ocular dominance plasticity in adult mice.
Lehmann K, Lowel S., PLoS ONE 3(9), 2008
PMID: 18769674
Lehmann K, Lowel S., PLoS ONE 3(9), 2008
PMID: 18769674
Screening mouse vision with intrinsic signal optical imaging.
Heimel JA, Hartman RJ, Hermans JM, Levelt CN., Eur. J. Neurosci. 25(3), 2007
PMID: 17328775
Heimel JA, Hartman RJ, Hermans JM, Levelt CN., Eur. J. Neurosci. 25(3), 2007
PMID: 17328775
Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.
Magistretti PJ, Pellerin L., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354(1387), 1999
PMID: 10466143
Magistretti PJ, Pellerin L., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 354(1387), 1999
PMID: 10466143
Lactate: the ultimate cerebral oxidative energy substrate?
Schurr A., J. Cereb. Blood Flow Metab. 26(1), 2006
PMID: 15973352
Schurr A., J. Cereb. Blood Flow Metab. 26(1), 2006
PMID: 15973352
Cerebral oxygen delivery and consumption during evoked neural activity.
Vazquez AL, Masamoto K, Fukuda M, Kim SG., Front Neuroenergetics 2(), 2010
PMID: 20616881
Vazquez AL, Masamoto K, Fukuda M, Kim SG., Front Neuroenergetics 2(), 2010
PMID: 20616881
Functional imaging of primary visual cortex using flavoprotein autofluorescence
AUTHOR UNKNOWN, 2007
AUTHOR UNKNOWN, 2007
Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke.
Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Lowel S., Proc. Natl. Acad. Sci. U.S.A. 108(37), 2011
PMID: 21873250
Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Lowel S., Proc. Natl. Acad. Sci. U.S.A. 108(37), 2011
PMID: 21873250
Spectral Characteristics of Visible Radiation Penetrating into the Brain and Stimulating Extraretinal Photoreceptors: Transmission Recordings in Vertebrates
AUTHOR UNKNOWN, 1979
AUTHOR UNKNOWN, 1979
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 24400130
PubMed | Europe PMC
Suchen in