A robust sound perception model suitable for neuromorphic implementation
Coath M, Sheik S, Chicca E, Indiveri G, Denham S, Wennekers T (2014)
Neuromorphic Engineering 7(278): 1-10.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Coath, M.;
Sheik, S.;
Chicca, ElisabettaUniBi ;
Indiveri, G.;
Denham, S.;
Wennekers, T.
Einrichtung
Abstract / Bemerkung
We have recently demonstrated the emergence of dynamic feature sensitivity through exposure to formative stimuli in a real-time neuromorphic system implementing a hybrid analog/digital network of spiking neurons. This network, inspired by models of auditory processing in mammals, includes several mutually connected layers with distance-dependent transmission delays and learning in the form of spike timing dependent plasticity, which effects stimulus-driven changes in the network connectivity. Here we present results that demonstrate that the network is robust to a range of variations in the stimulus pattern, such as are found in naturalistic stimuli and neural responses. This robustness is a property critical to the development of realistic, electronic neuromorphic systems. We analyze the variability of the response of the network to “noisy” stimuli which allows us to characterize the acuity in information-theoretic terms. This provides an objective basis for the quantitative comparison of networks, their connectivity patterns, and learning strategies, which can inform future design decisions. We also show, using stimuli derived from speech samples, that the principles are robust to other challenges, such as variable presentation rate, that would have to be met by systems deployed in the real world. Finally we demonstrate the potential applicability of the approach to real sounds.
Stichworte
neuromorphic;
VLSI;
information;
plasticity;
modeling;
auditory
Erscheinungsjahr
2014
Zeitschriftentitel
Neuromorphic Engineering
Band
7
Ausgabe
278
Seite(n)
1-10
ISSN
1662-453X
eISSN
1662-453X
Page URI
https://pub.uni-bielefeld.de/record/2654984
Zitieren
Coath M, Sheik S, Chicca E, Indiveri G, Denham S, Wennekers T. A robust sound perception model suitable for neuromorphic implementation. Neuromorphic Engineering. 2014;7(278):1-10.
Coath, M., Sheik, S., Chicca, E., Indiveri, G., Denham, S., & Wennekers, T. (2014). A robust sound perception model suitable for neuromorphic implementation. Neuromorphic Engineering, 7(278), 1-10. doi:10.3389/fnins.2013.00278
Coath, M., Sheik, S., Chicca, Elisabetta, Indiveri, G., Denham, S., and Wennekers, T. 2014. “A robust sound perception model suitable for neuromorphic implementation”. Neuromorphic Engineering 7 (278): 1-10.
Coath, M., Sheik, S., Chicca, E., Indiveri, G., Denham, S., and Wennekers, T. (2014). A robust sound perception model suitable for neuromorphic implementation. Neuromorphic Engineering 7, 1-10.
Coath, M., et al., 2014. A robust sound perception model suitable for neuromorphic implementation. Neuromorphic Engineering, 7(278), p 1-10.
M. Coath, et al., “A robust sound perception model suitable for neuromorphic implementation”, Neuromorphic Engineering, vol. 7, 2014, pp. 1-10.
Coath, M., Sheik, S., Chicca, E., Indiveri, G., Denham, S., Wennekers, T.: A robust sound perception model suitable for neuromorphic implementation. Neuromorphic Engineering. 7, 1-10 (2014).
Coath, M., Sheik, S., Chicca, Elisabetta, Indiveri, G., Denham, S., and Wennekers, T. “A robust sound perception model suitable for neuromorphic implementation”. Neuromorphic Engineering 7.278 (2014): 1-10.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:21Z
MD5 Prüfsumme
4881fc9ca298029177c7947f6bc81c57
Daten bereitgestellt von European Bioinformatics Institute (EBI)
3 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Breaking the millisecond barrier on SpiNNaker: implementing asynchronous event-based plastic models with microsecond resolution.
Lagorce X, Stromatias E, Galluppi F, Plana LA, Liu SC, Furber SB, Benosman RB., Front Neurosci 9(), 2015
PMID: 26106288
Lagorce X, Stromatias E, Galluppi F, Plana LA, Liu SC, Furber SB, Benosman RB., Front Neurosci 9(), 2015
PMID: 26106288
A framework for plasticity implementation on the SpiNNaker neural architecture.
Galluppi F, Lagorce X, Stromatias E, Pfeiffer M, Plana LA, Furber SB, Benosman RB., Front Neurosci 8(), 2014
PMID: 25653580
Galluppi F, Lagorce X, Stromatias E, Pfeiffer M, Plana LA, Furber SB, Benosman RB., Front Neurosci 8(), 2014
PMID: 25653580
Research topic: neuromorphic engineering systems and applications. A snapshot of neuromorphic systems engineering.
Delbruck T, van Schaik A, Hasler J., Front Neurosci 8(), 2014
PMID: 25565952
Delbruck T, van Schaik A, Hasler J., Front Neurosci 8(), 2014
PMID: 25565952
20 References
Daten bereitgestellt von Europe PubMed Central.
The Ornstein–Uhlenbeck process as a model of a low pass filtered white noise
Bibbona E., Panfilo G., Tavella P.., 2008
Bibbona E., Panfilo G., Tavella P.., 2008
Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
Brader JM, Senn W, Fusi S., Neural Comput 19(11), 2007
PMID: 17883345
Brader JM, Senn W, Fusi S., Neural Comput 19(11), 2007
PMID: 17883345
Tuning curves, neuronal variability, and sensory coding.
Butts DA, Goldman MS., PLoS Biol. 4(4), 2006
PMID: 16529529
Butts DA, Goldman MS., PLoS Biol. 4(4), 2006
PMID: 16529529
AER EAR: A matched silicon cochlea pair with address event representation interface
Chan V., Liu S.-C., van A.., 2007
Chan V., Liu S.-C., van A.., 2007
The emergence of feature sensitivity in a recurrent model of auditory cortex with spike timing dependent plasticity
Coath M., Mill R., Denham S., Wennekers T.., 2010
Coath M., Mill R., Denham S., Wennekers T.., 2010
Ellis D.., 2005
A PCI based high-fanout AER mapper with 2 GiB RAM look-up table, 0.8 μs latency and 66 mhz output event-rate
Fasnacht D., Indiveri G.., 2011
Fasnacht D., Indiveri G.., 2011
An introduction to roc analysis
Fawcett T.., 2006
Fawcett T.., 2006
A theory of cortical responses.
Friston K., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1456), 2005
PMID: 15937014
Friston K., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1456), 2005
PMID: 15937014
Derivation of auditory filter shapes from notched-noise data.
Glasberg BR, Moore BC., Hear. Res. 47(1-2), 1990
PMID: 2228789
Glasberg BR, Moore BC., Hear. Res. 47(1-2), 1990
PMID: 2228789
Feature-dependent sensitive periods in the development of complex sound representation.
Insanally MN, Kover H, Kim H, Bao S., J. Neurosci. 29(17), 2009
PMID: 19403813
Insanally MN, Kover H, Kim H, Bao S., J. Neurosci. 29(17), 2009
PMID: 19403813
Synthesizing cognition in neuromorphic electronic systems.
Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas RJ., Proc. Natl. Acad. Sci. U.S.A. 110(37), 2013
PMID: 23878215
Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas RJ., Proc. Natl. Acad. Sci. U.S.A. 110(37), 2013
PMID: 23878215
Facilitatory mechanisms underlying selectivity for the direction and rate of frequency modulated sweeps in the auditory cortex.
Razak KA, Fuzessery ZM., J. Neurosci. 28(39), 2008
PMID: 18815265
Razak KA, Fuzessery ZM., J. Neurosci. 28(39), 2008
PMID: 18815265
GABA shapes selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex.
Razak KA, Fuzessery ZM., J. Neurophysiol. 102(3), 2009
PMID: 19553486
Razak KA, Fuzessery ZM., J. Neurophysiol. 102(3), 2009
PMID: 19553486
Development of parallel auditory thalamocortical pathways for two different behaviors.
Razak KA, Fuzessery ZM., Front Neuroanat 4(), 2010
PMID: 20941327
Razak KA, Fuzessery ZM., Front Neuroanat 4(), 2010
PMID: 20941327
Exploiting device mismatch in neuromorphic vlsi systems to implement axonal delays
Sheik S., Chicca E., Indiveri G.., 2012
Sheik S., Chicca E., Indiveri G.., 2012
Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System.
Sheik S, Coath M, Indiveri G, Denham SL, Wennekers T, Chicca E., Front Neurosci 6(), 2012
PMID: 22347163
Sheik S, Coath M, Indiveri G, Denham SL, Wennekers T, Chicca E., Front Neurosci 6(), 2012
PMID: 22347163
Synaptic mechanisms of direction selectivity in primary auditory cortex.
Ye CQ, Poo MM, Dan Y, Zhang XH., J. Neurosci. 30(5), 2010
PMID: 20130195
Ye CQ, Poo MM, Dan Y, Zhang XH., J. Neurosci. 30(5), 2010
PMID: 20130195
Persistent and specific influences of early acoustic environments on primary auditory cortex.
Zhang LI, Bao S, Merzenich MM., Nat. Neurosci. 4(11), 2001
PMID: 11687817
Zhang LI, Bao S, Merzenich MM., Nat. Neurosci. 4(11), 2001
PMID: 11687817
Topography and synaptic shaping of direction selectivity in primary auditory cortex.
Zhang LI, Tan AY, Schreiner CE, Merzenich MM., Nature 424(6945), 2003
PMID: 12853959
Zhang LI, Tan AY, Schreiner CE, Merzenich MM., Nature 424(6945), 2003
PMID: 12853959
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 24478621
PubMed | Europe PMC
Suchen in