EyeSee3D: a low-cost approach for analysing mobile 3D eye tracking data using augmented reality technology

Pfeiffer T, Renner P (2014)
In: Proceedings of the Symposium on Eye Tracking Research and Applications. New York: ACM: 195-202.

Konferenzbeitrag | Veröffentlicht| Englisch
 
Download
OA
Abstract / Bemerkung
For validly analyzing human visual attention, it is often necessary to proceed from computer-based desktop set-ups to more natural real-world settings. However, the resulting loss of control has to be counterbalanced by increasing participant and/or item count. Together with the effort required to manually annotate the gaze-cursor videos recorded with mobile eye trackers, this renders many studies unfeasible. We tackle this issue by minimizing the need for manual annotation of mobile gaze data. Our approach combines geo\-metric modelling with inexpensive 3D marker tracking to align virtual proxies with the real-world objects. This allows us to classify fixations on objects of interest automatically while supporting a completely free moving participant. The paper presents the EyeSee3D method as well as a comparison of an expensive outside-in (external cameras) and a low-cost inside-out (scene camera) tracking of the eyetracker's position. The EyeSee3D approach is evaluated comparing the results from automatic and manual classification of fixation targets, which raises old problems of annotation validity in a modern context.
Stichworte
Gaze-based InteractionEyetrackingAugmented Reality
Erscheinungsjahr
2014
Titel des Konferenzbandes
Proceedings of the Symposium on Eye Tracking Research and Applications
Seite(n)
195-202
ISBN
978-1-4503-2751-0
Page URI
https://pub.uni-bielefeld.de/record/2652246

Zitieren

Pfeiffer T, Renner P. EyeSee3D: a low-cost approach for analysing mobile 3D eye tracking data using augmented reality technology. In: Proceedings of the Symposium on Eye Tracking Research and Applications. New York: ACM; 2014: 195-202.
Pfeiffer, T., & Renner, P. (2014). EyeSee3D: a low-cost approach for analysing mobile 3D eye tracking data using augmented reality technology. Proceedings of the Symposium on Eye Tracking Research and Applications, 195-202. New York: ACM. doi:10.1145/2578153.2578183
Pfeiffer, T., and Renner, P. (2014). “EyeSee3D: a low-cost approach for analysing mobile 3D eye tracking data using augmented reality technology” in Proceedings of the Symposium on Eye Tracking Research and Applications (New York: ACM), 195-202.
Pfeiffer, T., & Renner, P., 2014. EyeSee3D: a low-cost approach for analysing mobile 3D eye tracking data using augmented reality technology. In Proceedings of the Symposium on Eye Tracking Research and Applications. New York: ACM, pp. 195-202.
T. Pfeiffer and P. Renner, “EyeSee3D: a low-cost approach for analysing mobile 3D eye tracking data using augmented reality technology”, Proceedings of the Symposium on Eye Tracking Research and Applications, New York: ACM, 2014, pp.195-202.
Pfeiffer, T., Renner, P.: EyeSee3D: a low-cost approach for analysing mobile 3D eye tracking data using augmented reality technology. Proceedings of the Symposium on Eye Tracking Research and Applications. p. 195-202. ACM, New York (2014).
Pfeiffer, Thies, and Renner, Patrick. “EyeSee3D: a low-cost approach for analysing mobile 3D eye tracking data using augmented reality technology”. Proceedings of the Symposium on Eye Tracking Research and Applications. New York: ACM, 2014. 195-202.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:20Z
MD5 Prüfsumme
2afcfde0b6b1d25a9a2d82104968dda1

Zusatzmaterial
Titel
Poster
Beschreibung
Poster going along with the long paper and the video submission. This poster was used for the demonstration booth at ETRA 2014.
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:20Z
MD5 Prüfsumme
1eb00270345f530fcb3ea7efcb598b47

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche