The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles

Akemann G, Phillips MJ (2014)
Journal of Statistical Physics 155(3): 421-465.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Akemann, GernotUniBi; Phillips, M. J.
Abstract / Bemerkung
We consider two families of non-Hermitian Gaussian random matrices, namelythe elliptical Ginibre ensembles of asymmetric N-by-N matrices with Dyson index $\beta=1$ (real elements) and with $\beta=4$ (quaternion-real elements). Bothensembles have already been solved for finite N using the method ofskew-orthogonal polynomials, given for these particular ensembles in terms ofHermite polynomials in the complex plane. In this paper we investigate themicroscopic weakly non-Hermitian large-N limit of each ensemble in the vicinityof the largest or smallest real eigenvalue. Specifically, we derive thelimiting matrix-kernels for each case, from which all the eigenvaluecorrelation functions can be determined. We call these new kernels the"interpolating" Airy kernels, since we can recover -- as opposing limitingcases -- not only the well-known Airy kernels for the Hermitian ensembles, butalso the complementary error function and Poisson kernels for the maximallynon-Hermitian ensembles at the edge of the spectrum. Together with the knowninterpolating Airy kernel for beta=2, which we rederive here as well, thiscompletes the analysis of all three elliptical Ginibre ensembles in themicroscopic scaling limit at the spectral edge.
Stichworte
Elliptic real and quaternionic; Ginibre ensembles; Weak non-Hermiticity; Interpolating Airy-kernels; Non-Hermitian Random Matrix Theory
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of Statistical Physics
Band
155
Ausgabe
3
Seite(n)
421-465
ISSN
0022-4715
eISSN
1572-9613
Page URI
https://pub.uni-bielefeld.de/record/2648821

Zitieren

Akemann G, Phillips MJ. The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles. Journal of Statistical Physics. 2014;155(3):421-465.
Akemann, G., & Phillips, M. J. (2014). The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles. Journal of Statistical Physics, 155(3), 421-465. doi:10.1007/s10955-014-0962-6
Akemann, Gernot, and Phillips, M. J. 2014. “The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles”. Journal of Statistical Physics 155 (3): 421-465.
Akemann, G., and Phillips, M. J. (2014). The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles. Journal of Statistical Physics 155, 421-465.
Akemann, G., & Phillips, M.J., 2014. The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles. Journal of Statistical Physics, 155(3), p 421-465.
G. Akemann and M.J. Phillips, “The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles”, Journal of Statistical Physics, vol. 155, 2014, pp. 421-465.
Akemann, G., Phillips, M.J.: The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles. Journal of Statistical Physics. 155, 421-465 (2014).
Akemann, Gernot, and Phillips, M. J. “The Interpolating Airy Kernels for the $\beta=1$ and $\beta=4$ Elliptic Ginibre Ensembles”. Journal of Statistical Physics 155.3 (2014): 421-465.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

arXiv: 1308.3418

Suchen in

Google Scholar