Universal microscopic correlation functions for products of truncated unitary matrices
Akemann G, Burda Z, Kieburg M, Nagao T (2014)
Journal of Physics: A Mathematical and Theoretical 47(25): 255202.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Akemann, GernotUniBi;
Burda, Zdzislaw;
Kieburg, Mario;
Nagao, Taro
Einrichtung
Abstract / Bemerkung
We investigate the spectral properties of the product of $M$ complexnon-Hermitian random matrices that are obtained by removing $L$ rows andcolumns of larger unitary random matrices uniformly distributed on the group${\rm U}(N+L)$. Such matrices are called truncated unitary matrices or randomcontractions. We first derive the joint probability distribution for theeigenvalues of the product matrix for fixed $N,\ L$, and $M$, given by astandard determinantal point process in the complex plane. The weight howeveris non-standard and can be expressed in terms of the Meijer G-function. Theexplicit knowledge of all eigenvalue correlation functions and thecorresponding kernel allows us to take various large $N$ (and $L$) limits atfixed $M$. At strong non-unitarity, with $L/N$ finite, the eigenvalues condenseon a domain inside the unit circle. At the edge and in the bulk we find thesame universal microscopic kernel as for a single complex non-Hermitian matrixfrom the Ginibre ensemble. At the origin we find the same new universalityclasses labelled by $M$ as for the product of $M$ matrices from the Ginibreensemble. Keeping a fixed size of truncation, $L$, when $N$ goes to infinityleads to weak non-unitarity, with most eigenvalues on the unit circle as forunitary matrices. Here we find a new microscopic edge kernel that generalizesthe known results for M=1. We briefly comment on the case when each productmatrix results from a truncation of different size $L_j$.
Stichworte
product matrices;
random matrix theory;
universality;
truncated unitary matrices
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of Physics: A Mathematical and Theoretical
Band
47
Ausgabe
25
Art.-Nr.
255202
ISSN
1751-8113
eISSN
1751-8121
Page URI
https://pub.uni-bielefeld.de/record/2648813
Zitieren
Akemann G, Burda Z, Kieburg M, Nagao T. Universal microscopic correlation functions for products of truncated unitary matrices. Journal of Physics: A Mathematical and Theoretical. 2014;47(25): 255202.
Akemann, G., Burda, Z., Kieburg, M., & Nagao, T. (2014). Universal microscopic correlation functions for products of truncated unitary matrices. Journal of Physics: A Mathematical and Theoretical, 47(25), 255202. doi:10.1088/1751-8113/47/25/255202
Akemann, Gernot, Burda, Zdzislaw, Kieburg, Mario, and Nagao, Taro. 2014. “Universal microscopic correlation functions for products of truncated unitary matrices”. Journal of Physics: A Mathematical and Theoretical 47 (25): 255202.
Akemann, G., Burda, Z., Kieburg, M., and Nagao, T. (2014). Universal microscopic correlation functions for products of truncated unitary matrices. Journal of Physics: A Mathematical and Theoretical 47:255202.
Akemann, G., et al., 2014. Universal microscopic correlation functions for products of truncated unitary matrices. Journal of Physics: A Mathematical and Theoretical, 47(25): 255202.
G. Akemann, et al., “Universal microscopic correlation functions for products of truncated unitary matrices”, Journal of Physics: A Mathematical and Theoretical, vol. 47, 2014, : 255202.
Akemann, G., Burda, Z., Kieburg, M., Nagao, T.: Universal microscopic correlation functions for products of truncated unitary matrices. Journal of Physics: A Mathematical and Theoretical. 47, : 255202 (2014).
Akemann, Gernot, Burda, Zdzislaw, Kieburg, Mario, and Nagao, Taro. “Universal microscopic correlation functions for products of truncated unitary matrices”. Journal of Physics: A Mathematical and Theoretical 47.25 (2014): 255202.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 1310.6395
Suchen in