The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation
Kluth S, Baake E (2013)
Theoretical Population Biology 90: 104-112.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
We reconsider the Moran model in continuous time with population size N, two allelic types, and selection. We introduce a new particle representation, which we call the labelled Moran model, and which has the same distribution of type frequencies as the original Moran model, provided the initial values are chosen appropriately. In the new model, individuals are labelled 1, 2,..., N; neutral resampling events may take place between arbitrary labels, whereas selective events only occur in the direction of increasing labels. With the help of elementary methods only, we not only recover fixation probabilities, but also obtain detailed insight into the number and nature of the selective events that play a role in the fixation process forward in time. (c) 2013 Elsevier Inc. All rights reserved.
Stichworte
Labelled Moran model;
Moran model with selection;
Fixation probability;
Defining event;
Ancestral line
Erscheinungsjahr
2013
Zeitschriftentitel
Theoretical Population Biology
Band
90
Seite(n)
104-112
ISSN
0040-5809
Page URI
https://pub.uni-bielefeld.de/record/2645211
Zitieren
Kluth S, Baake E. The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation. Theoretical Population Biology. 2013;90:104-112.
Kluth, S., & Baake, E. (2013). The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation. Theoretical Population Biology, 90, 104-112. doi:10.1016/j.tpb.2013.09.009
Kluth, Sandra, and Baake, Ellen. 2013. “The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation”. Theoretical Population Biology 90: 104-112.
Kluth, S., and Baake, E. (2013). The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation. Theoretical Population Biology 90, 104-112.
Kluth, S., & Baake, E., 2013. The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation. Theoretical Population Biology, 90, p 104-112.
S. Kluth and E. Baake, “The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation”, Theoretical Population Biology, vol. 90, 2013, pp. 104-112.
Kluth, S., Baake, E.: The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation. Theoretical Population Biology. 90, 104-112 (2013).
Kluth, Sandra, and Baake, Ellen. “The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation”. Theoretical Population Biology 90 (2013): 104-112.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
17 References
Daten bereitgestellt von Europe PubMed Central.
A look-down model with selection
Bah, 2012
Bah, 2012
A countable representation of the Fleming–Viot measure-valued diffusion
Donnelly, Ann. Probab. 24(), 1996
Donnelly, Ann. Probab. 24(), 1996
Genealogical processes for Fleming–Viot models with selection and recombination
Donnelly, Ann. Appl. Probab. 9(), 1999
Donnelly, Ann. Appl. Probab. 9(), 1999
Particle representations for measure-valued population models
Donnelly, Ann. Probab. 27(), 1999
Donnelly, Ann. Probab. 27(), 1999
Durrett, 2008
Etheridge, 2011
Ewens, 2004
The common ancestor at a nonneutral locus
Fearnhead, J. Appl. Probab. 39(), 2002
Fearnhead, J. Appl. Probab. 39(), 2002
Alternative to the diffusion equation in population genetics.
Houchmandzadeh B, Vallade M., Phys Rev E Stat Nonlin Soft Matter Phys 82(5 Pt 1), 2010
PMID: 21230506
Houchmandzadeh B, Vallade M., Phys Rev E Stat Nonlin Soft Matter Phys 82(5 Pt 1), 2010
PMID: 21230506
Karlin, 1981
On the probability of fixation of mutant genes in a population.
KIMURA M., Genetics 47(), 1962
PMID: 14456043
KIMURA M., Genetics 47(), 1962
PMID: 14456043
The common ancestor process revisited
Kluth, Bull. Math. Biol. (), 2013
Kluth, Bull. Math. Biol. (), 2013
Ancestral Processes with Selection
Krone SM, Neuhauser C., Theor Popul Biol 51(3), 1997
PMID: 9245777
Krone SM, Neuhauser C., Theor Popul Biol 51(3), 1997
PMID: 9245777
Duality, ancestral and diffusion processes in models with selection.
Mano S., Theor Popul Biol 75(2-3), 2009
PMID: 19388143
Mano S., Theor Popul Biol 75(2-3), 2009
PMID: 19388143
The genealogy of samples in models with selection.
Neuhauser C, Krone SM., Genetics 145(2), 1997
PMID: 9071604
Neuhauser C, Krone SM., Genetics 145(2), 1997
PMID: 9071604
The ancestral selection graph under strong directional selection.
Pokalyuk C, Pfaffelhuber P., Theor Popul Biol 87(), 2012
PMID: 23064041
Pokalyuk C, Pfaffelhuber P., Theor Popul Biol 87(), 2012
PMID: 23064041
The common ancestor process for a Wright–Fisher diffusion
Taylor, Electron. J. Probab. 12(), 2007
Taylor, Electron. J. Probab. 12(), 2007
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 24071633
PubMed | Europe PMC
Suchen in