Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus

Markert B, Stolzenberger J, Brautaset T, Wendisch VF (2014)
BMC Microbiology 14(1): 7: 7.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Background Transketolase (TKT) is a key enzyme of the pentose phosphate pathway (PPP), the Calvin cycle and the ribulose monophosphate (RuMP) cycle. Bacillus methanolicus is a facultative RuMP pathway methylotroph. B. methanolicus MGA3 harbors two genes putatively coding for TKTs; one located on the chromosome (tktC) and one located on the natural occurring plasmid pBM19 (tktP). Results Both enzymes were produced in recombinant Escherichia coli, purified and shown to share similar biochemical parameters in vitro. They were found to be active as homotetramers and require thiamine pyrophosphate for catalytic activity. The inactive apoform of the TKTs, yielded by dialysis against buffer containing 10 mM EDTA, could be reconstituted most efficiently with Mn2+ and Mg2+. Both TKTs were thermo stable at physiological temperature (up to 65°C) with the highest activity at neutral pH. Ni2+, ATP and ADP significantly inhibited activity of both TKTs. Unlike the recently characterized RuMP pathway enzymes fructose 1,6-bisphosphate aldolase (FBA) and fructose 1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase (FBPase/SBPase) from B. methanolicus MGA3, both TKTs exhibited similar kinetic parameters although they only share 76% identical amino acids. The kinetic parameters were determined for the reaction with the substrates xylulose 5-phosphate (TKTC: kcat/KM: 264 s-1 mM-1; TKTP: kcat/KM: 231 s-1 mM) and ribulose 5-phosphate (TKTC: kcat/KM: 109 s-1 mM; TKTP: kcat/KM: 84 s-1 mM) as well as for the reaction with the substrates glyceraldehyde 3-phosphate (TKTC: kcat/KM: 108 s-1 mM; TKTP: kcat/KM: 71 s-1 mM) and fructose 6-phosphate (TKTC kcat/KM: 115 s-1 mM; TKTP: kcat/KM: 448 s-1 mM). Conclusions Based on the kinetic parameters no major TKT of B. methanolicus could be determined. Increased expression of tktP, but not of tktC during growth with methanol [J Bacteriol 188:3063–3072, 2006] argues for TKTP being the major TKT relevant in the RuMP pathway. Neither TKT exhibited activity as dihydroxyacetone synthase, as found in methylotrophic yeast, or as the evolutionary related 1-deoxyxylulose-5-phosphate synthase. The biological significance of the two TKTs for B. methanolicus methylotrophy is discussed.
Stichworte
Transketolase (TKT); Thiamine pyrophosphate (THDP) dependent enzyme; Ribulose monophosphate (RuMP) pathway; Methylotrophy; Bacillus methanolicus
Erscheinungsjahr
2014
Zeitschriftentitel
BMC Microbiology
Band
14
Ausgabe
1
Art.-Nr.
7
Seite(n)
7
ISSN
1471-2180
eISSN
1471-2180
Page URI
https://pub.uni-bielefeld.de/record/2644836

Zitieren

Markert B, Stolzenberger J, Brautaset T, Wendisch VF. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiology. 2014;14(1):7: 7.
Markert, B., Stolzenberger, J., Brautaset, T., & Wendisch, V. F. (2014). Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiology, 14(1), 7., 7. doi:10.1186/1471-2180-14-7
Markert, B., Stolzenberger, J., Brautaset, T., and Wendisch, V. F. (2014). Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiology 14, 7:7.
Markert, B., et al., 2014. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiology, 14(1), p 7: 7.
B. Markert, et al., “Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus”, BMC Microbiology, vol. 14, 2014, pp. 7, : 7.
Markert, B., Stolzenberger, J., Brautaset, T., Wendisch, V.F.: Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiology. 14, 7 : 7 (2014).
Markert, Benno, Stolzenberger, Jessica, Brautaset, Trygve, and Wendisch, Volker F. “Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus”. BMC Microbiology 14.1 (2014): 7: 7.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:30:46Z
MD5 Prüfsumme
12e013c5bbb97556a5b053276666e706

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Salmonella enterica serovar Typhimurium has three transketolase enzymes contributing to the pentose phosphate pathway.
Shaw JA, Henard CA, Liu L, Dieckman LM, Vázquez-Torres A, Bourret TJ., J Biol Chem 293(29), 2018
PMID: 29848552
6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28213736
Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.
Carnicer M, Vieira G, Brautaset T, Portais JC, Heux S., Microb Cell Fact 15(), 2016
PMID: 27251037
Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.
Müller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T., Appl Microbiol Biotechnol 99(2), 2015
PMID: 25431011
Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.
Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET., Curr Opin Biotechnol 33(), 2015
PMID: 25796071

64 References

Daten bereitgestellt von Europe PubMed Central.

Properties and functions of the thiamin diphosphate dependent enzyme transketolase.
Schenk G, Duggleby RG, Nixon PF., Int. J. Biochem. Cell Biol. 30(12), 1998
PMID: 9924800
A review on research progress of transketolase.
Zhao J, Zhong CJ., Neurosci Bull 25(2), 2009
PMID: 19290028
Transketolase reaction under credible prebiotic conditions.
Breslow R, Appayee C., Proc. Natl. Acad. Sci. U.S.A. 110(11), 2013
PMID: 23440198
Transketolase from yeast, rat liver, and pig liver
AUTHOR UNKNOWN, 1982
Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes.
Kamada N, Yasuhara A, Takano Y, Nakano T, Ikeda M., Appl. Microbiol. Biotechnol. 56(5-6), 2001
PMID: 11601619
Taxonomical studies on glutamic acid producing bacteria
AUTHOR UNKNOWN, 1967
Heptulose synthesis from nonphosphorylated aldoses and ketoses by spinach transketolase.
Villafranca JJ, Axelrod B., J. Biol. Chem. 246(10), 1971
PMID: 5574390
Kinetic studies of mouse brain transketolase.
Blass JP, Piacentini S, Boldizsar E, Baker A., J. Neurochem. 39(3), 1982
PMID: 7097279
Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains.
Sprenger GA, Schorken U, Sprenger G, Sahm H., Eur. J. Biochem. 230(2), 1995
PMID: 7607225
Enzymes of glucose and methanol metabolism in the actinomycete Amycolatopsis methanolica.
Alves AM, Euverink GJ, Hektor HJ, Hessels GI, van der Vlag J, Vrijbloed JW, Hondmann D, Visser J, Dijkhuizen L., J. Bacteriol. 176(22), 1994
PMID: 7961441
Molecular characterization of two genes with high similarity to the dihydroxyacetone synthase gene in the methylotrophic yeast Pichia methanolica.
Nakagawa T, Fujimura S, Ito T, Matsufuji Y, Ozawa S, Miyaji T, Nakagawa J, Tomizuka N, Yurimoto H, Sakai Y, Hayakawa T., Biosci. Biotechnol. Biochem. 74(7), 2010
PMID: 20622431
Bacillus methanolicus sp nov, a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria
AUTHOR UNKNOWN, 1992
Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus.
Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J., Eur. J. Biochem. 244(2), 1997
PMID: 9119008
L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.
Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS., Appl. Environ. Microbiol. 56(4), 1990
PMID: 2111119
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424
Bacterial oxidation of methane and methanol.
Anthony C., Adv. Microb. Physiol. 27(), 1986
PMID: 3020939
Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene.
de Vries GE, Arfman N, Terpstra P, Dijkhuizen L., J. Bacteriol. 174(16), 1992
PMID: 1644761
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Stolzenberger J, Lindner SN, Wendisch VF., Microbiology (Reading, Engl.) 159(Pt 8), 2013
PMID: 23760818
Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Josefsen KD, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 74(1), 2007
PMID: 17216461
Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants.
Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC., Appl. Environ. Microbiol. 69(7), 2003
PMID: 12839772
Molecular cloning and characterization of Plasmodium falciparum transketolase.
Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK., Mol. Biochem. Parasitol. 160(1), 2008
PMID: 18456347
Transketolase from Leishmania mexicana has a dual subcellular localization.
Veitch NJ, Maugeri DA, Cazzulo JJ, Lindqvist Y, Barrett MP., Biochem. J. 382(Pt 2), 2004
PMID: 15149284
Transketolase in Trypanosoma brucei.
Stoffel SA, Alibu VP, Hubert J, Ebikeme C, Portais JC, Bringaud F, Schweingruber ME, Barrett MP., Mol. Biochem. Parasitol. 179(1), 2011
PMID: 21570429
Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisiae.
Golbik R, Meshalkina LE, Sandalova T, Tittmann K, Fiedler E, Neef H, Konig S, Kluger R, Kochetov GA, Schneider G, Hubner G., FEBS J. 272(6), 2005
PMID: 15752351
A common structural motif in thiamin pyrophosphate-binding enzymes.
Hawkins CF, Borges A, Perham RN., FEBS Lett. 255(1), 1989
PMID: 2792374
Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.
Meshalkina L, Nilsson U, Wikner C, Kostikowa T, Schneider G., Eur. J. Biochem. 244(2), 1997
PMID: 9119035
Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase.
Abedinia M, Layfield R, Jones SM, Nixon PF, Mattick JS., Biochem. Biophys. Res. Commun. 183(3), 1992
PMID: 1567394
Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE., Appl. Environ. Microbiol. 75(3), 2008
PMID: 19060158
Purification, kinetic studies, and homology model of Escherichia coli fructose-1,6-bisphosphatase.
Kelley-Loughnane N, Biolsi SA, Gibson KM, Lu G, Hehir MJ, Phelan P, Kantrowitz ER., Biochim. Biophys. Acta 1594(1), 2002
PMID: 11825604
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Degnes KF, Netzer R, Naerdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20372887
Transketolase: observations in alcohol-related brain damage research.
Alexander-Kaufman K, Harper C., Int. J. Biochem. Cell Biol. 41(4), 2008
PMID: 18490188
Binding of the coenzyme and formation of the transketolase active center.
Kochetov G, Sevostyanova IA., IUBMB Life 57(7), 2005
PMID: 16081370
[Transketolase from human erythrocytes. Purification and properties.]
Heinrich PC, Wiss O., Helv. Chim. Acta 54(8), 1971
PMID: 5141430
[Transketolase: structure and mechanism of action]
Kochetov GA., Biokhimiia 51(12), 1986
PMID: 3542062
Identification of catalytically important residues in yeast transketolase.
Wikner C, Nilsson U, Meshalkina L, Udekwu C, Lindqvist Y, Schneider G., Biochemistry 36(50), 1997
PMID: 9398292
TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene.
Schaaff-Gerstenschlager I, Mannhaupt G, Vetter I, Zimmermann FK, Feldmann H., Eur. J. Biochem. 217(1), 1993
PMID: 7916691
Dihydroxyacetone synthase from Candida boidinii KD1.
Bystrykh LV, de Koning W, Harder W., Meth. Enzymol. 188(), 1990
PMID: 2280716
Donor substrate regulation of transketolase.
Esakova OA, Meshalkina LE, Golbik R, Hubner G, Kochetov GA., Eur. J. Biochem. 271(21), 2004
PMID: 15511224
Techniques for transformation of E coli
AUTHOR UNKNOWN, 1985

AUTHOR UNKNOWN, 2001
Use of T7 RNA polymerase to direct expression of cloned genes.
Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW., Meth. Enzymol. 185(), 1990
PMID: 2199796
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl. Environ. Microbiol. 73(15), 2007
PMID: 17545325
Material in PUB:
Teil dieser Dissertation

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24405865
PubMed | Europe PMC

Suchen in

Google Scholar