Instantons and Extreme Value Statistics of Random Matrices

Atkin M, Zohren S (2014)
Journal of High Energy Physics 2014(4): 118.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Atkin, MaxUniBi; Zohren, Stefan
Abstract / Bemerkung
We discuss the distribution of the largest eigenvalue of a random N x NHermitian matrix. Utilising results from the quantum gravity and string theoryliterature it is seen that the orthogonal polynomials approach, firstintroduced by Majumdar and Nadal, can be extended to calculate both the leftand right tail large deviations of the maximum eigenvalue. This framework doesnot only provide computational advantages when considering the left and righttail large deviations for general potentials, as is done explicitly for thefirst multi-critical potential, but it also offers an interestinginterpretation of the results. In particular, it is seen that the left taillarge deviations follow from a standard perturbative large N expansion of thefree energy, while the right tail large deviations are related to thenon-perturbative expansion and thus to instanton corrections. Considering thestandard interpretation of instantons as tunnelling of eigenvalues, we see thatthe right tail rate function can be identified with the instanton action whichin turn can be given as a simple expression in terms of the spectral curve.From the string theory point of view these non-perturbative correctionscorrespond to branes and can be identified with FZZT branes.
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of High Energy Physics
Band
2014
Ausgabe
4
Art.-Nr.
118
ISSN
1029-8479
eISSN
1029-8479
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen von SCOAP$^3$ – Sponsoring Consortium for Open Access Publishing in Particle Physics gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2642744

Zitieren

Atkin M, Zohren S. Instantons and Extreme Value Statistics of Random Matrices. Journal of High Energy Physics. 2014;2014(4): 118.
Atkin, M., & Zohren, S. (2014). Instantons and Extreme Value Statistics of Random Matrices. Journal of High Energy Physics, 2014(4), 118. https://doi.org/10.1007/JHEP04(2014)118
Atkin, Max, and Zohren, Stefan. 2014. “Instantons and Extreme Value Statistics of Random Matrices”. Journal of High Energy Physics 2014 (4): 118.
Atkin, M., and Zohren, S. (2014). Instantons and Extreme Value Statistics of Random Matrices. Journal of High Energy Physics 2014:118.
Atkin, M., & Zohren, S., 2014. Instantons and Extreme Value Statistics of Random Matrices. Journal of High Energy Physics, 2014(4): 118.
M. Atkin and S. Zohren, “Instantons and Extreme Value Statistics of Random Matrices”, Journal of High Energy Physics, vol. 2014, 2014, : 118.
Atkin, M., Zohren, S.: Instantons and Extreme Value Statistics of Random Matrices. Journal of High Energy Physics. 2014, : 118 (2014).
Atkin, Max, and Zohren, Stefan. “Instantons and Extreme Value Statistics of Random Matrices”. Journal of High Energy Physics 2014.4 (2014): 118.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:20Z
MD5 Prüfsumme
6c81ba8d09b7b315586abaa1fa070b54


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

arXiv: 1307.3118

Inspire: 1242318

SCOAP3: 2130

Suchen in

Google Scholar