A universal strategy for visually guided landing
Baird E, Boeddeker N, Ibbotson MR, Srinivasan MV (2013)
Proceedings Of The National Academy Of Sciences 110(46): 18686-18691.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Baird, Emily;
Boeddeker, NorbertUniBi;
Ibbotson, Michael R.;
Srinivasan, Mandyam V.
Einrichtung
Abstract / Bemerkung
Landing is a challenging aspect of flight because, to land safely, speed must be decreased to a value close to zero at touchdown. The mechanisms by which animals achieve this remain unclear. When landing on horizontal surfaces, honey bees control their speed by holding constant the rate of front-to-back image motion (optic flow) generated by the surface as they reduce altitude. As inclination increases, however, this simple pattern of optic flow becomes increasingly complex. How do honey bees control speed when landing on surfaces that have different orientations? To answer this, we analyze the trajectories of honey bees landing on a vertical surface that produces various patterns of motion. We find that landing honey bees control their speed by holding the rate of expansion of the image constant. We then test and confirm this hypothesis rigorously by analyzing landings when the apparent rate of expansion generated by the surface is manipulated artificially. This strategy ensures that speed is reduced, gradually and automatically, as the surface is approached. We then develop a mathematical model of this strategy and show that it can effectively be used to guide smooth landings on surfaces of any orientation, including horizontal surfaces. This biological strategy for guiding landings does not require knowledge about either the distance to the surface or the speed at which it is approached. The simplicity and generality of this landing strategy suggests that it is likely to be exploited by other flying animals and makes it ideal for implementation in the guidance systems of flying robots.
Stichworte
flight control;
three-dimensional surface;
insect;
vision
Erscheinungsjahr
2013
Zeitschriftentitel
Proceedings Of The National Academy Of Sciences
Band
110
Ausgabe
46
Seite(n)
18686-18691
ISSN
0027-8424
eISSN
1091-6490
Page URI
https://pub.uni-bielefeld.de/record/2641853
Zitieren
Baird E, Boeddeker N, Ibbotson MR, Srinivasan MV. A universal strategy for visually guided landing. Proceedings Of The National Academy Of Sciences. 2013;110(46):18686-18691.
Baird, E., Boeddeker, N., Ibbotson, M. R., & Srinivasan, M. V. (2013). A universal strategy for visually guided landing. Proceedings Of The National Academy Of Sciences, 110(46), 18686-18691. https://doi.org/10.1073/pnas.1314311110
Baird, Emily, Boeddeker, Norbert, Ibbotson, Michael R., and Srinivasan, Mandyam V. 2013. “A universal strategy for visually guided landing”. Proceedings Of The National Academy Of Sciences 110 (46): 18686-18691.
Baird, E., Boeddeker, N., Ibbotson, M. R., and Srinivasan, M. V. (2013). A universal strategy for visually guided landing. Proceedings Of The National Academy Of Sciences 110, 18686-18691.
Baird, E., et al., 2013. A universal strategy for visually guided landing. Proceedings Of The National Academy Of Sciences, 110(46), p 18686-18691.
E. Baird, et al., “A universal strategy for visually guided landing”, Proceedings Of The National Academy Of Sciences, vol. 110, 2013, pp. 18686-18691.
Baird, E., Boeddeker, N., Ibbotson, M.R., Srinivasan, M.V.: A universal strategy for visually guided landing. Proceedings Of The National Academy Of Sciences. 110, 18686-18691 (2013).
Baird, Emily, Boeddeker, Norbert, Ibbotson, Michael R., and Srinivasan, Mandyam V. “A universal strategy for visually guided landing”. Proceedings Of The National Academy Of Sciences 110.46 (2013): 18686-18691.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
33 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses.
Caro T, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M, Lake J, Mitchell MJ, Richardson S, How M., PLoS One 14(2), 2019
PMID: 30785882
Caro T, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M, Lake J, Mitchell MJ, Richardson S, How M., PLoS One 14(2), 2019
PMID: 30785882
The role of optic flow pooling in insect flight control in cluttered environments.
Lecoeur J, Dacke M, Floreano D, Baird E., Sci Rep 9(1), 2019
PMID: 31118454
Lecoeur J, Dacke M, Floreano D, Baird E., Sci Rep 9(1), 2019
PMID: 31118454
Wind prevents cliff-breeding birds from accessing nests through loss of flight control.
Shepard E, Cole EL, Neate A, Lempidakis E, Ross A., Elife 8(), 2019
PMID: 31188128
Shepard E, Cole EL, Neate A, Lempidakis E, Ross A., Elife 8(), 2019
PMID: 31188128
Landing maneuvers of houseflies on vertical and inverted surfaces.
Balebail S, Raja SK, Sane SP., PLoS One 14(8), 2019
PMID: 31412069
Balebail S, Raja SK, Sane SP., PLoS One 14(8), 2019
PMID: 31412069
Comparison of Visually Guided Flight in Insects and Birds.
Altshuler DL, Srinivasan MV., Front Neurosci 12(), 2018
PMID: 29615852
Altshuler DL, Srinivasan MV., Front Neurosci 12(), 2018
PMID: 29615852
A direct optic flow-based strategy for inverse flight altitude estimation with monocular vision and IMU measurements.
Chirarattananon P., Bioinspir Biomim 13(3), 2018
PMID: 29256435
Chirarattananon P., Bioinspir Biomim 13(3), 2018
PMID: 29256435
Fabrication of Cu2 O-based Materials for Lithium-Ion Batteries.
Zhang L, Li Q, Xue H, Pang H., ChemSusChem 11(10), 2018
PMID: 29316323
Zhang L, Li Q, Xue H, Pang H., ChemSusChem 11(10), 2018
PMID: 29316323
Role of side-slip flight in target pursuit: blue-tailed damselflies (Ischnura elegans) avoid body rotation while approaching a moving perch.
Kassner Z, Ribak G., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 204(6), 2018
PMID: 29666930
Kassner Z, Ribak G., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 204(6), 2018
PMID: 29666930
The Dominant Role of Visual Motion Cues in Bumblebee Flight Control Revealed Through Virtual Reality.
Frasnelli E, Hempel de Ibarra N, Stewart FJ., Front Physiol 9(), 2018
PMID: 30108522
Frasnelli E, Hempel de Ibarra N, Stewart FJ., Front Physiol 9(), 2018
PMID: 30108522
The optomotor response of the praying mantis is driven predominantly by the central visual field.
Nityananda V, Tarawneh G, Errington S, Serrano-Pedraza I, Read J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(1), 2017
PMID: 28005254
Nityananda V, Tarawneh G, Errington S, Serrano-Pedraza I, Read J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(1), 2017
PMID: 28005254
Bio-inspired vision based robot control using featureless estimations of time-to-contact.
Zhang H, Zhao J., Bioinspir Biomim 12(2), 2017
PMID: 27973340
Zhang H, Zhao J., Bioinspir Biomim 12(2), 2017
PMID: 27973340
A Novel Interception Strategy in a Miniature Robber Fly with Extreme Visual Acuity.
Wardill TJ, Fabian ST, Pettigrew AC, Stavenga DG, Nordström K, Gonzalez-Bellido PT., Curr Biol 27(6), 2017
PMID: 28286000
Wardill TJ, Fabian ST, Pettigrew AC, Stavenga DG, Nordström K, Gonzalez-Bellido PT., Curr Biol 27(6), 2017
PMID: 28286000
Flight control of fruit flies: dynamic response to optic flow and headwind.
Lawson KKK, Srinivasan MV., J Exp Biol 220(pt 11), 2017
PMID: 28314748
Lawson KKK, Srinivasan MV., J Exp Biol 220(pt 11), 2017
PMID: 28314748
Posterior parietal cortex estimates the relationship between object and body location during locomotion.
Marigold DS, Drew T., Elife 6(), 2017
PMID: 29053442
Marigold DS, Drew T., Elife 6(), 2017
PMID: 29053442
Neural basis of forward flight control and landing in honeybees.
Ibbotson MR, Hung YS, Meffin H, Boeddeker N, Srinivasan MV., Sci Rep 7(1), 2017
PMID: 29109404
Ibbotson MR, Hung YS, Meffin H, Boeddeker N, Srinivasan MV., Sci Rep 7(1), 2017
PMID: 29109404
Kinematic compensation for wing loss in flying damselflies.
Kassner Z, Dafni E, Ribak G., J Insect Physiol 85(), 2016
PMID: 26598807
Kassner Z, Dafni E, Ribak G., J Insect Physiol 85(), 2016
PMID: 26598807
The final moments of landing in bumblebees, Bombus terrestris.
Reber T, Baird E, Dacke M., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 202(4), 2016
PMID: 26868924
Reber T, Baird E, Dacke M., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 202(4), 2016
PMID: 26868924
How Wasps Acquire and Use Views for Homing.
Stürzl W, Zeil J, Boeddeker N, Hemmi JM., Curr Biol 26(4), 2016
PMID: 26877083
Stürzl W, Zeil J, Boeddeker N, Hemmi JM., Curr Biol 26(4), 2016
PMID: 26877083
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner A, Stürzl W, Zanker J., PLoS One 11(2), 2016
PMID: 26886006
Werner A, Stürzl W, Zanker J., PLoS One 11(2), 2016
PMID: 26886006
Finding the gap: a brightness-based strategy for guidance in cluttered environments.
Baird E, Dacke M., Proc Biol Sci 283(1828), 2016
PMID: 27053748
Baird E, Dacke M., Proc Biol Sci 283(1828), 2016
PMID: 27053748
Airflow and optic flow mediate antennal positioning in flying honeybees.
Roy Khurana T, Sane SP., Elife 5(), 2016
PMID: 27097104
Roy Khurana T, Sane SP., Elife 5(), 2016
PMID: 27097104
Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion.
Graule MA, Chirarattananon P, Fuller SB, Jafferis NT, Ma KY, Spenko M, Kornbluh R, Wood RJ., Science 352(6288), 2016
PMID: 27199427
Graule MA, Chirarattananon P, Fuller SB, Jafferis NT, Ma KY, Spenko M, Kornbluh R, Wood RJ., Science 352(6288), 2016
PMID: 27199427
Zebras and Biting Flies: Quantitative Analysis of Reflected Light from Zebra Coats in Their Natural Habitat.
Britten KH, Thatcher TD, Caro T., PLoS One 11(5), 2016
PMID: 27223616
Britten KH, Thatcher TD, Caro T., PLoS One 11(5), 2016
PMID: 27223616
Wind alters landing dynamics in bumblebees.
Chang JJ, Crall JD, Combes SA., J Exp Biol (), 2016
PMID: 27436135
Chang JJ, Crall JD, Combes SA., J Exp Biol (), 2016
PMID: 27436135
Bumblebees Perform Well-Controlled Landings in Dim Light.
Reber T, Dacke M, Warrant E, Baird E., Front Behav Neurosci 10(), 2016
PMID: 27683546
Reber T, Dacke M, Warrant E, Baird E., Front Behav Neurosci 10(), 2016
PMID: 27683546
Motion cues improve the performance of harnessed bees in a colour learning task.
Balamurali GS, Somanathan H, Hempel de Ibarra N., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(5), 2015
PMID: 25739517
Balamurali GS, Somanathan H, Hempel de Ibarra N., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(5), 2015
PMID: 25739517
Science, technology and the future of small autonomous drones.
Floreano D, Wood RJ., Nature 521(7553), 2015
PMID: 26017445
Floreano D, Wood RJ., Nature 521(7553), 2015
PMID: 26017445
How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization.
Kress D, van Bokhorst E, Lentink D., PLoS One 10(6), 2015
PMID: 26107413
Kress D, van Bokhorst E, Lentink D., PLoS One 10(6), 2015
PMID: 26107413
An artificial elementary eye with optic flow detection and compositional properties.
Pericet-Camara R, Dobrzynski MK, Juston R, Viollet S, Leitel R, Mallot HA, Floreano D., J R Soc Interface 12(109), 2015
PMID: 26202684
Pericet-Camara R, Dobrzynski MK, Juston R, Viollet S, Leitel R, Mallot HA, Floreano D., J R Soc Interface 12(109), 2015
PMID: 26202684
Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact.
Parker JE, Angarita-Jaimes N, Abe M, Towers CE, Towers D, McCall PJ., Sci Rep 5(), 2015
PMID: 26323965
Parker JE, Angarita-Jaimes N, Abe M, Towers CE, Towers D, McCall PJ., Sci Rep 5(), 2015
PMID: 26323965
More than colour attraction: behavioural functions of flower patterns.
Hempel de Ibarra N, Langridge KV, Vorobyev M., Curr Opin Insect Sci 12(), 2015
PMID: 27064650
Hempel de Ibarra N, Langridge KV, Vorobyev M., Curr Opin Insect Sci 12(), 2015
PMID: 27064650
Conceptualization of relative size by honeybees.
Avarguès-Weber A, d'Amaro D, Metzler M, Dyer AG., Front Behav Neurosci 8(), 2014
PMID: 24672444
Avarguès-Weber A, d'Amaro D, Metzler M, Dyer AG., Front Behav Neurosci 8(), 2014
PMID: 24672444
Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
23 References
Daten bereitgestellt von Europe PubMed Central.
Time course of the housefly’s landing response
Borst A., 1986
Borst A., 1986
Spatio-temporal integration of motion
Borst A, Bahde S., 1988
Borst A, Bahde S., 1988
The landing responses of insects: I. The landing response of the fly, Lucilia sericata, and other Calliphorinae
Goodman LJ., 1960
Goodman LJ., 1960
Landing strategies in honeybees, and possible applications to autonomous airborne vehicles.
Srinivasan MV, Zhang S, Chahl JS., Biol. Bull. 200(2), 2001
PMID: 11341587
Srinivasan MV, Zhang S, Chahl JS., Biol. Bull. 200(2), 2001
PMID: 11341587
How honeybees make grazing landings on flat surfaces.
Srinivasan MV, Zhang SW, Chahl JS, Barth E, Venkatesh S., Biol Cybern 83(3), 2000
PMID: 11007294
Srinivasan MV, Zhang SW, Chahl JS, Barth E, Venkatesh S., Biol Cybern 83(3), 2000
PMID: 11007294
The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster.
van Breugel F, Dickinson MH., J. Exp. Biol. 215(Pt 11), 2012
PMID: 22573757
van Breugel F, Dickinson MH., J. Exp. Biol. 215(Pt 11), 2012
PMID: 22573757
Flow-field variables trigger landing in flies
Wagner H., 1982
Wagner H., 1982
Is the landing response of the housefly (Musca) driven by motion of a flowfield?
Wehrhahn C, Hausen K, Zanker JM., 1981
Wehrhahn C, Hausen K, Zanker JM., 1981
Visual control of velocity of approach by pigeons when landing
Lee DN, Davies MNO, Green P, van FR., 1993
Lee DN, Davies MNO, Green P, van FR., 1993
Optic flow-field variables trigger landing in hawk but not in pigeons.
Davies MN, Green PR., Naturwissenschaften 77(3), 1990
PMID: 2342582
Davies MN, Green PR., Naturwissenschaften 77(3), 1990
PMID: 2342582
How insects infer range from visual motion.
Srinivasan MV., Rev Oculomot Res 5(), 1993
PMID: 8420547
Srinivasan MV., Rev Oculomot Res 5(), 1993
PMID: 8420547
Depth vision in animals
Collett TS, Harkness LIK., 1982
Collett TS, Harkness LIK., 1982
Zum binokularen Entfernungssehen der Insekten
Burkhardt D, Darnhofer-Demar B, Fischer K., 1973
Burkhardt D, Darnhofer-Demar B, Fischer K., 1973
Relative sensitivities to large-field optic-flow patterns varying in direction and speed.
Edwards M, Ibbotson MR., Perception 36(1), 2007
PMID: 17357709
Edwards M, Ibbotson MR., Perception 36(1), 2007
PMID: 17357709
Local structure of movement parallax of the plane
Koenderink JJ, van AJ., 1976
Koenderink JJ, van AJ., 1976
The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera.
Evangelista C, Kraft P, Dacke M, Reinhard J, Srinivasan MV., J. Exp. Biol. 213(2), 2010
PMID: 20038660
Evangelista C, Kraft P, Dacke M, Reinhard J, Srinivasan MV., J. Exp. Biol. 213(2), 2010
PMID: 20038660
Range perception through apparent image speed in freely flying honeybees.
Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW., Vis. Neurosci. 6(5), 1991
PMID: 2069903
Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW., Vis. Neurosci. 6(5), 1991
PMID: 2069903
Honeybee navigation en route to the goal: visual flight control and odometry
Srinivasan M, Zhang S, Lehrer M, Collett T., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317712
Srinivasan M, Zhang S, Lehrer M, Collett T., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317712
Honeybee navigation: properties of the visually driven 'odometer'.
Si A, Srinivasan MV, Zhang S., J. Exp. Biol. 206(Pt 8), 2003
PMID: 12624162
Si A, Srinivasan MV, Zhang S., J. Exp. Biol. 206(Pt 8), 2003
PMID: 12624162
Visual control of flight speed in honeybees.
Baird E, Srinivasan MV, Zhang S, Cowling A., J. Exp. Biol. 208(Pt 20), 2005
PMID: 16215217
Baird E, Srinivasan MV, Zhang S, Cowling A., J. Exp. Biol. 208(Pt 20), 2005
PMID: 16215217
The optic flow field: the foundation of vision.
Lee DN., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 290(1038), 1980
PMID: 6106236
Lee DN., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 290(1038), 1980
PMID: 6106236
AUTHOR UNKNOWN, 0
McCulloch CE, Searle SR., 2001
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 24167269
PubMed | Europe PMC
Suchen in