Cooperative Binding of PhoB(DBD) to Its Cognate DNA Sequence-A Combined Application of Single-Molecule and Ensemble Methods

Ritzefeld M, Walhorn V, Kleineberg C, Bieker A, Kock K, Herrmann C, Anselmetti D, Sewald N (2013)
Biochemistry 52(46): 8177-8186.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ; ; ; ; ; ;
Abstract / Bemerkung
A combined approach based on isothermal titration calorimetry (ITC), fluorescence resonance energy transfer (FRET) experiments, circular dichroism spectroscopy (CD), atomic force microscopy (AFM) dynamic force spectroscopy (DFS), and surface plasmon resonance (SPR) was applied to elucidate the mechanism of protein-DNA complex formation and the impact of protein dimerization of the DNA-binding domain of PhoB (PhoB(DBD)). These insights can be translated to related members of the family of winged helix-turn-helix proteins. One central question was the assembly of the trimeric complex formed by two molecules of PhoB(DBD) and two cognate binding sites of a single oligonucleotide. In addition to the native protein WT-PhoB(DBD), semisynthetic covalently linked dimers with different linker lengths were studied. The ITC, SPR, FRET, and CD results indicate a positive cooperative binding mechanism and a decisive contribution of dimerization on the complex stability. Furthermore, an alanine scan was performed and binding of the corresponding point mutants was analyzed by both techniques to discriminate between different binding types involved in the protein-DNA interaction and to compare the information content of the two methods DFS and SPR. In light of the published crystal structure, four types of contribution to the recognition process of the pho box by the protein PhoB(DBD) could be differentiated and quantified. Consequently, it could be shown that investigating the interactions between DNA and proteins with complementary techniques is necessary to fully understand the corresponding recognition process.
Erscheinungsjahr
2013
Zeitschriftentitel
Biochemistry
Band
52
Ausgabe
46
Seite(n)
8177-8186
ISSN
0006-2960
eISSN
1520-4995
Page URI
https://pub.uni-bielefeld.de/record/2641428

Zitieren

Ritzefeld M, Walhorn V, Kleineberg C, et al. Cooperative Binding of PhoB(DBD) to Its Cognate DNA Sequence-A Combined Application of Single-Molecule and Ensemble Methods. Biochemistry. 2013;52(46):8177-8186.
Ritzefeld, M., Walhorn, V., Kleineberg, C., Bieker, A., Kock, K., Herrmann, C., Anselmetti, D., et al. (2013). Cooperative Binding of PhoB(DBD) to Its Cognate DNA Sequence-A Combined Application of Single-Molecule and Ensemble Methods. Biochemistry, 52(46), 8177-8186. doi:10.1021/bi400718r
Ritzefeld, M., Walhorn, V., Kleineberg, C., Bieker, A., Kock, K., Herrmann, C., Anselmetti, D., and Sewald, N. (2013). Cooperative Binding of PhoB(DBD) to Its Cognate DNA Sequence-A Combined Application of Single-Molecule and Ensemble Methods. Biochemistry 52, 8177-8186.
Ritzefeld, M., et al., 2013. Cooperative Binding of PhoB(DBD) to Its Cognate DNA Sequence-A Combined Application of Single-Molecule and Ensemble Methods. Biochemistry, 52(46), p 8177-8186.
M. Ritzefeld, et al., “Cooperative Binding of PhoB(DBD) to Its Cognate DNA Sequence-A Combined Application of Single-Molecule and Ensemble Methods”, Biochemistry, vol. 52, 2013, pp. 8177-8186.
Ritzefeld, M., Walhorn, V., Kleineberg, C., Bieker, A., Kock, K., Herrmann, C., Anselmetti, D., Sewald, N.: Cooperative Binding of PhoB(DBD) to Its Cognate DNA Sequence-A Combined Application of Single-Molecule and Ensemble Methods. Biochemistry. 52, 8177-8186 (2013).
Ritzefeld, Markus, Walhorn, Volker, Kleineberg, Christin, Bieker, Adeline, Kock, Klaus, Herrmann, Christian, Anselmetti, Dario, and Sewald, Norbert. “Cooperative Binding of PhoB(DBD) to Its Cognate DNA Sequence-A Combined Application of Single-Molecule and Ensemble Methods”. Biochemistry 52.46 (2013): 8177-8186.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24199636
PubMed | Europe PMC

Suchen in

Google Scholar