Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography

Schie IW, Nolte L, Pedersen TL, Smith Z, Wu J, Yahiatene I, Newman JW, Huser T (2013)
Analyst 138(21): 6662-6670.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schie, Iwan W.; Nolte, LenaUniBi; Pedersen, Theresa L.; Smith, Zach; Wu, Jian; Yahiatene, IdirUniBi; Newman, John W.; Huser, ThomasUniBi
Abstract / Bemerkung
Cellular lipid droplets are the least studied and least understood cellular organelles in eukaryotic and prokaryotic cells. Despite a significant body of research studying the physiology of lipid droplets it has not yet been possible to fully determine the composition of individual cellular lipid droplets. In this paper we use Raman spectroscopy on single cellular lipid droplets and least-squares fitting of pure fatty acid spectra to determine the composition of individual lipid droplets in cells after treatment with different ratios of oleic and palmitic acid. We validate the results of the Raman spectroscopy-based single lipid droplet analysis with results obtained by gas chromatography analysis of millions of cells, and find that our approach can accurately predict the relative amount of a specific fatty acid in the lipid droplet. Based on these results we show that the fatty acid composition in individual lipid droplets is on average similar to that of all lipid droplets found in the sample. Furthermore, we expand this approach to the investigation of the lipid composition in single cellular peroxisomes. We determine the location of cellular peroxisomes based on two-photon excitation fluorescence (TPEF) imaging of peroxisomes labeled with the green fluorescent protein, and successive Raman spectroscopy of peroxisomes. We find that in some cases peroxisomes can produce a detectable CARS signal, and that the peroxisomal Raman spectra exhibit an oleic acid-like signature.
Erscheinungsjahr
2013
Zeitschriftentitel
Analyst
Band
138
Ausgabe
21
Seite(n)
6662-6670
ISSN
0003-2654
eISSN
1364-5528
Page URI
https://pub.uni-bielefeld.de/record/2638385

Zitieren

Schie IW, Nolte L, Pedersen TL, et al. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst. 2013;138(21):6662-6670.
Schie, I. W., Nolte, L., Pedersen, T. L., Smith, Z., Wu, J., Yahiatene, I., Newman, J. W., et al. (2013). Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst, 138(21), 6662-6670. doi:10.1039/c3an00970j
Schie, Iwan W., Nolte, Lena, Pedersen, Theresa L., Smith, Zach, Wu, Jian, Yahiatene, Idir, Newman, John W., and Huser, Thomas. 2013. “Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography”. Analyst 138 (21): 6662-6670.
Schie, I. W., Nolte, L., Pedersen, T. L., Smith, Z., Wu, J., Yahiatene, I., Newman, J. W., and Huser, T. (2013). Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst 138, 6662-6670.
Schie, I.W., et al., 2013. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst, 138(21), p 6662-6670.
I.W. Schie, et al., “Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography”, Analyst, vol. 138, 2013, pp. 6662-6670.
Schie, I.W., Nolte, L., Pedersen, T.L., Smith, Z., Wu, J., Yahiatene, I., Newman, J.W., Huser, T.: Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst. 138, 6662-6670 (2013).
Schie, Iwan W., Nolte, Lena, Pedersen, Theresa L., Smith, Zach, Wu, Jian, Yahiatene, Idir, Newman, John W., and Huser, Thomas. “Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography”. Analyst 138.21 (2013): 6662-6670.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Real-time Raman and SRS imaging of living human macrophages reveals cell-to-cell heterogeneity and dynamics of lipid uptake.
Stiebing C, Meyer T, Rimke I, Matthäus C, Schmitt M, Lorkowski S, Popp J., J Biophotonics 10(9), 2017
PMID: 28164480
Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches.
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J., Angew Chem Int Ed Engl 56(16), 2017
PMID: 27862751
Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications.
Krafft C, Schie IW, Meyer T, Schmitt M, Popp J., Chem Soc Rev 45(7), 2016
PMID: 26497570
Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy.
Jaeger D, Pilger C, Hachmeister H, Oberländer E, Wördenweber R, Wichmann J, Mussgnug JH, Huser T, Kruse O., Sci Rep 6(), 2016
PMID: 27767024
The many facets of Raman spectroscopy for biomedical analysis.
Krafft C, Popp J., Anal Bioanal Chem 407(3), 2015
PMID: 25428454
In vivo study of lipid accumulation in the microalgae marine diatom Thalassiosira pseudonana using Raman spectroscopy.
Meksiarun P, Spegazzini N, Matsui H, Nakajima K, Matsuda Y, Sato H., Appl Spectrosc 69(1), 2015
PMID: 25506782
Shedding light on host niches: label-free in situ detection of Mycobacterium gordonae via carotenoids in macrophages by Raman microspectroscopy.
Silge A, Abdou E, Schneider K, Meisel S, Bocklitz T, Lu-Walther HW, Heintzmann R, Rösch P, Popp J., Cell Microbiol 17(6), 2015
PMID: 25488726
Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content.
Smith ZJ, Lee C, Rojalin T, Carney RP, Hazari S, Knudson A, Lam K, Saari H, Ibañez EL, Viitala T, Laaksonen T, Yliperttula M, Wachsmann-Hogiu S., J Extracell Vesicles 4(), 2015
PMID: 26649679
Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations.
Kathe N, Henriksen B, Chauhan H., Drug Dev Ind Pharm 40(12), 2014
PMID: 24766553
Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy.
Stiebing C, Matthäus C, Krafft C, Keller AA, Weber K, Lorkowski S, Popp J., Anal Bioanal Chem 406(27), 2014
PMID: 24939132
A novel mouse model of nonalcoholic steatohepatitis with significant insulin resistance.
Adkins Y, Schie IW, Fedor D, Reddy A, Nguyen S, Zhou P, Kelley DS, Wu J., Lab Invest 93(12), 2013
PMID: 24145238

33 References

Daten bereitgestellt von Europe PubMed Central.

Lipid droplets: a classic organelle with new outfits.
Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y., Histochem. Cell Biol. 130(2), 2008
PMID: 18546013
Lipid droplets finally get a little R-E-S-P-E-C-T.
Farese RV Jr, Walther TC., Cell 139(5), 2009
PMID: 19945371
Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant.
Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, Enrich C, Parton RG., Mol. Biol. Cell 15(1), 2003
PMID: 14528016
Lipid droplets: a unified view of a dynamic organelle.
Martin S, Parton RG., Nat. Rev. Mol. Cell Biol. 7(5), 2006
PMID: 16550215
Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell.
Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R., J. Cell Biol. 152(5), 2001
PMID: 11238462
Proteins under new management: lipid droplets deliver.
Welte MA., Trends Cell Biol. 17(8), 2007
PMID: 17766117
Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein.
Sato S, Fukasawa M, Yamakawa Y, Natsume T, Suzuki T, Shoji I, Aizaki H, Miyamura T, Nishijima M., J. Biochem. 139(5), 2006
PMID: 16751600
Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets.
Barba G, Harper F, Harada T, Kohara M, Goulinet S, Matsuura Y, Eder G, Schaff Z, Chapman MJ, Miyamura T, Brechot C., Proc. Natl. Acad. Sci. U.S.A. 94(4), 1997
PMID: 9037030
Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets.
McLauchlan J, Lemberg MK, Hope G, Martoglio B., EMBO J. 21(15), 2002
PMID: 12145199
The gregarious lipid droplet.
Goodman JM., J. Biol. Chem. 283(42), 2008
PMID: 18611863
Triglyceride accumulation protects against fatty acid-induced lipotoxicity.
Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE., Proc. Natl. Acad. Sci. U.S.A. 100(6), 2003
PMID: 12629214

Wei, Am. J. Physiol.: Endocrinol. Metab. 291(), 2006
Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy.
Evans CL, Potma EO, Puoris'haag M, Cote D, Lin CP, Xie XS., Proc. Natl. Acad. Sci. U.S.A. 102(46), 2005
PMID: 16263923
Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy.
Hellerer T, Axang C, Brackmann C, Hillertz P, Pilon M, Enejder A., Proc. Natl. Acad. Sci. U.S.A. 104(37), 2007
PMID: 17804796

Weeks, J. Biomed. Opt. 16(), 2011
Label-free imaging and analysis of the effects of lipolysis products on primary hepatocytes.
Schie IW, Wu J, Weeks T, Zern MA, Rutledge JC, Huser T., J Biophotonics 4(6), 2010
PMID: 20878906
High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.
Slipchenko MN, Le TT, Chen H, Cheng JX., J Phys Chem B 113(21), 2009
PMID: 19422201
Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules.
Wiemer EA, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S., J. Cell Biol. 136(1), 1997
PMID: 9008704
Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting.
Schie IW, Weeks T, McNerney GP, Fore S, Sampson JK, Wachsmann-Hogiu S, Rutledge JC, Huser T., Opt Express 16(3), 2008
PMID: 18542297
ScanImage: flexible software for operating laser scanning microscopes.
Pologruto TA, Sabatini BL, Svoboda K., Biomed Eng Online 2(), 2003
PMID: 12801419
Automated method for subtraction of fluorescence from biological Raman spectra.
Lieber CA, Mahadevan-Jansen A., Appl Spectrosc 57(11), 2003
PMID: 14658149

Smedes, Analyst 124(), 1999

Shafer-Peltier, J. Raman Spectrosc. 33(), 2002
The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies.
Stone N, Hart Prieto MC, Crow P, Uff J, Ritchie AW., Anal Bioanal Chem 387(5), 2006
PMID: 17123068

Hamilton, J. Chemom. 4(), 2005

Boelens, J. Chromatogr., A 1057(), 2004

Poirier, Biochim. Biophys. Acta, Mol. Cell Res. 1763(), 2006
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24000336
PubMed | Europe PMC

Suchen in

Google Scholar