Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons

Tabuchi M, Sakurai T, Namiki S, Haupt S, Ninegshi R, Mitsuno H, Shiotsuki T, Uchino K, Sezutsu H, Tamura T, Nakatani K, et al. (2013)
Proc Natl Acad Sci U S A 110(38): 15455-15460.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tabuchi, Masashi; Sakurai, Takeshi; Namiki, Shigehiro; Haupt, StephanUniBi; Ninegshi, Ryo; Mitsuno, Hidefumi; Shiotsuki, Takahiro; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Nakatani, Kei; Kanzaki, Ryohei
Alle
Erscheinungsjahr
2013
Zeitschriftentitel
Proc Natl Acad Sci U S A
Band
110
Ausgabe
38
Seite(n)
15455-15460
ISSN
0027-8424
eISSN
1091-6490
Page URI
https://pub.uni-bielefeld.de/record/2638321

Zitieren

Tabuchi M, Sakurai T, Namiki S, et al. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A. 2013;110(38):15455-15460.
Tabuchi, M., Sakurai, T., Namiki, S., Haupt, S., Ninegshi, R., Mitsuno, H., Shiotsuki, T., et al. (2013). Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A, 110(38), 15455-15460. doi:10.1073/pnas.1313707110
Tabuchi, Masashi, Sakurai, Takeshi, Namiki, Shigehiro, Haupt, Stephan, Ninegshi, Ryo, Mitsuno, Hidefumi, Shiotsuki, Takahiro, et al. 2013. “Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons”. Proc Natl Acad Sci U S A 110 (38): 15455-15460.
Tabuchi, M., Sakurai, T., Namiki, S., Haupt, S., Ninegshi, R., Mitsuno, H., Shiotsuki, T., Uchino, K., Sezutsu, H., Tamura, T., et al. (2013). Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A 110, 15455-15460.
Tabuchi, M., et al., 2013. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A, 110(38), p 15455-15460.
M. Tabuchi, et al., “Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons”, Proc Natl Acad Sci U S A, vol. 110, 2013, pp. 15455-15460.
Tabuchi, M., Sakurai, T., Namiki, S., Haupt, S., Ninegshi, R., Mitsuno, H., Shiotsuki, T., Uchino, K., Sezutsu, H., Tamura, T., Nakatani, K., Kanzaki, R.: Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A. 110, 15455-15460 (2013).
Tabuchi, Masashi, Sakurai, Takeshi, Namiki, Shigehiro, Haupt, Stephan, Ninegshi, Ryo, Mitsuno, Hidefumi, Shiotsuki, Takahiro, Uchino, Keiro, Sezutsu, Hideki, Tamura, Toshiki, Nakatani, Kei, and Kanzaki, Ryohei. “Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons”. Proc Natl Acad Sci U S A 110.38 (2013): 15455-15460.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Refinement of ectopic protein expression through the GAL4/UAS system in Bombyx mori: application to behavioral and developmental studies.
Hara C, Morishita K, Takayanagi-Kiya S, Mikami A, Uchino K, Sakurai T, Kanzaki R, Sezutsu H, Iwami M, Kiya T., Sci Rep 7(1), 2017
PMID: 28924263
Olfactory coding in the turbulent realm.
Jacob V, Monsempès C, Rospars JP, Masson JB, Lucas P., PLoS Comput Biol 13(12), 2017
PMID: 29194457
Neurally Encoding Time for Olfactory Navigation.
Park IJ, Hein AM, Bobkov YV, Reidenbach MA, Ache BW, Principe JC., PLoS Comput Biol 12(1), 2016
PMID: 26730727
Natural search algorithms as a bridge between organisms, evolution, and ecology.
Hein AM, Carrara F, Brumley DR, Stocker R, Levin SA., Proc Natl Acad Sci U S A 113(34), 2016
PMID: 27496324
Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth.
Sakurai T, Mitsuno H, Mikami A, Uchino K, Tabuchi M, Zhang F, Sezutsu H, Kanzaki R., Sci Rep 5(), 2015
PMID: 26047360
Two types of local interneurons are distinguished by morphology, intrinsic membrane properties, and functional connectivity in the moth antennal lobe.
Tabuchi M, Dong L, Inoue S, Namiki S, Sakurai T, Nakatani K, Kanzaki R., J Neurophysiol 114(5), 2015
PMID: 26378200
Olfactory coding in the insect brain: data and conjectures.
Galizia CG., Eur J Neurosci 39(11), 2014
PMID: 24698302
Establishment of tools for neurogenetic analysis of sexual behavior in the silkmoth, Bombyx mori.
Kiya T, Morishita K, Uchino K, Iwami M, Sezutsu H., PLoS One 9(11), 2014
PMID: 25396742
Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of second-order neurons.
Rospars JP, Grémiaux A, Jarriault D, Chaffiol A, Monsempes C, Deisig N, Anton S, Lucas P, Martinez D., PLoS Comput Biol 10(12), 2014
PMID: 25474026

49 References

Daten bereitgestellt von Europe PubMed Central.

[Smell threshold of the silkworm].
Kaissling KE, Priesner E., Naturwissenschaften 57(1), 1970
PMID: 5417282

Kaissling KE., 1987
Reduction of dimensionality of biological diffusion processes
Adam G, Delbrück M., 1968
Broadly and narrowly tuned odorant receptors are involved in female sex pheromone reception in Ostrinia moths.
Miura N, Nakagawa T, Touhara K, Ishikawa Y., Insect Biochem. Mol. Biol. 40(1), 2010
PMID: 20044000
Candidate pheromone receptors of the silkmoth Bombyx mori.
Krieger J, Grosse-Wilde E, Gohl T, Breer H., Eur. J. Neurosci. 21(8), 2005
PMID: 15869513
Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori.
Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T., Proc. Natl. Acad. Sci. U.S.A. 101(47), 2004
PMID: 15545611
Insect sex-pheromone signals mediated by specific combinations of olfactory receptors.
Nakagawa T, Sakurai T, Nishioka T, Touhara K., Science 307(5715), 2005
PMID: 15692016
Identification of receptors of main sex-pheromone components of three Lepidopteran species.
Mitsuno H, Sakurai T, Murai M, Yasuda T, Kugimiya S, Ozawa R, Toyohara H, Takabayashi J, Miyoshi H, Nishioka T., Eur. J. Neurosci. 28(5), 2008
PMID: 18691330
Functional characterization of pheromone receptors in the tobacco budworm Heliothis virescens.
Wang G, Vasquez GM, Schal C, Zwiebel LJ, Gould F., Insect Mol. Biol. 20(1), 2010
PMID: 20946532
Mechanisms of olfactory discrimination: converging evidence for common principles across phyla.
Hildebrand JG, Shepherd GM., Annu. Rev. Neurosci. 20(), 1997
PMID: 9056726
Functional specialization of olfactory glomeruli in a moth.
Hansson BS, Ljungberg H, Hallberg E, Lofstedt C., Science 256(5061), 1992
PMID: 1598574
Dose-dependent response characteristics of antennal lobe neurons in the male moth Agrotis segetum (Lepidoptera: Noctuidae)
Hartlieb E, Anton S, Hansson BS., 1997
Short-term synaptic plasticity as a temporal filter.
Fortune ES, Rose GJ., Trends Neurosci. 24(7), 2001
PMID: 11410267
Molecular frequency filters at central synapses.
Thomson AM., Prog. Neurobiol. 62(2), 2000
PMID: 10828382
Facilitation, augmentation and potentiation at central synapses.
Thomson AM., Trends Neurosci. 23(7), 2000
PMID: 10856940
Odor plumes and how insects use them
Murlis J, Elkinton JS, Cardé RT., 1992
Spatial and temporal structures of pheromone plumes in fields and forests.
Murlis J, Willis MA, Carde RT., Physiol. Entomol. 25(3), 2000
PMID: IND22681048
On the structure of instantaneous plumes in the atmosphere
Jones CD., 1983
Measurement of odor-plume structure in a wind tunnel using a photoionization detector and a tracer gas
Justus KA., 2002
A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori.
Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, Nishioka T, Kobayashi I, Sezutsu H, Tamura T, Kanzaki R., PLoS Genet. 7(6), 2011
PMID: 21738481
Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking
Kanzaki R., 1992
Pheromone-triggered ‘flipflopping’ neural signals correlate with activities of neck motor neurons of a male moth, Bombyx mori
Kanzaki R, Mishima T., 1996
GABAergic mechanisms that shape the temporal response to odors in moth olfactory projection neurons.
Christensen TA, Waldrop BR, Hildebrand JG., Ann. N. Y. Acad. Sci. 855(), 1998
PMID: 9929641
Cellular mechanisms of temporal sensitivity in visual cortex neurons.
Cardin JA, Kumbhani RD, Contreras D, Palmer LA., J. Neurosci. 30(10), 2010
PMID: 20219999
GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta
Waldrop B, Christensen TA, Hildebrand JG., 1987
A presynaptic gain control mechanism fine-tunes olfactory behavior.
Root CM, Masuyama K, Green DS, Enell LE, Nassel DR, Lee CH, Wang JW., Neuron 59(2), 2008
PMID: 18667158
Odour-plume dynamics influence the brain's olfactory code.
Vickers NJ, Christensen TA, Baker TC, Hildebrand JG., Nature 410(6827), 2001
PMID: 11260713
Neural encoding of rapidly fluctuating odors.
Geffen MN, Broome BM, Laurent G, Meister M., Neuron 61(4), 2009
PMID: 19249277
Multimodal fast optical interrogation of neural circuitry.
Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K., Nature 446(7136), 2007
PMID: 17410168
Rescue of white egg 1 mutant by introduction of the wild-type Bombyx kynurenine 3–monooxygenase gene
Quan G., 2007
Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector.
Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P, Toshiki T, Chantal T, Corinne R, Toshio K, Eappen A, Mari K, Natuo K, Jean-Luc T, Bernard M, Gerard C, Paul S, Malcolm F, Jean-Claude P, Pierre C., Nat. Biotechnol. 18(1), 2000
PMID: 10625397
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24006366
PubMed | Europe PMC

Suchen in

Google Scholar