Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch ($Taeniopygia$ $guttata$)

Eckmeier D, Kern R, Egelhaaf M, Bischof H-J (2013)
Frontiers in Integrative Neuroscience 7: 68.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for maneuvering. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increased the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated, how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information. We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signaled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Integrative Neuroscience
Band
7
Seite(n)
68
ISSN
eISSN
PUB-ID

Zitieren

Eckmeier D, Kern R, Egelhaaf M, Bischof H-J. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch ($Taeniopygia$ $guttata$). Frontiers in Integrative Neuroscience. 2013;7:68.
Eckmeier, D., Kern, R., Egelhaaf, M., & Bischof, H. - J. (2013). Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch ($Taeniopygia$ $guttata$). Frontiers in Integrative Neuroscience, 7, 68. doi:10.3389/fnint.2013.00068
Eckmeier, D., Kern, R., Egelhaaf, M., and Bischof, H. - J. (2013). Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch ($Taeniopygia$ $guttata$). Frontiers in Integrative Neuroscience 7, 68.
Eckmeier, D., et al., 2013. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch ($Taeniopygia$ $guttata$). Frontiers in Integrative Neuroscience, 7, p 68.
D. Eckmeier, et al., “Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch ($Taeniopygia$ $guttata$)”, Frontiers in Integrative Neuroscience, vol. 7, 2013, pp. 68.
Eckmeier, D., Kern, R., Egelhaaf, M., Bischof, H.-J.: Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch ($Taeniopygia$ $guttata$). Frontiers in Integrative Neuroscience. 7, 68 (2013).
Eckmeier, Dennis, Kern, Roland, Egelhaaf, Martin, and Bischof, Hans-Joachim. “Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch ($Taeniopygia$ $guttata$)”. Frontiers in Integrative Neuroscience 7 (2013): 68.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:19Z

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Optic flow stabilizes flight in ruby-throated hummingbirds.
Ros IG, Biewener AA., J Exp Biol 219(pt 16), 2016
PMID: 27284072
Background complexity affects response of a looming-sensitive neuron to object motion.
Silva AC, McMillan GA, Santos CP, Gray JR., J Neurophysiol 113(1), 2015
PMID: 25274344

51 References

Daten bereitgestellt von Europe PubMed Central.

Motion parallax from microscopic head movements during visual fixation.
Aytekin M, Rucci M., Vision Res. 70(), 2012
PMID: 22902643
Optic flow cues guide flight in birds.
Bhagavatula PS, Claudianos C, Ibbotson MR, Srinivasan MV., Curr. Biol. 21(21), 2011
PMID: 22036184
A stereotaxic headholder for small birds.
Bischof HJ., Brain Res. Bull. 7(4), 1981
PMID: 7028213
Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata.
Keary N, Ruploh T, Voss J, Thalau P, Wiltschko R, Wiltschko W, Bischof HJ., Front. Zool. 6(), 2009
PMID: 19852792
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Neural dynamics of saccadic suppression.
Bremmer F, Kubischik M, Hoffmann KP, Krekelberg B., J. Neurosci. 29(40), 2009
PMID: 19812313
Interactions between self-motion and depth perception in the processing of optic flow.
Cornilleau-Peres V, Gielen CC., Trends Neurosci. 19(5), 1996
PMID: 8723207
The optokinetic response in wild type and white zebra finches.
Eckmeier D, Bischof HJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(10), 2008
PMID: 18704442
Gaze strategy in the free flying zebra finch (Taeniopygia guttata).
Eckmeier D, Geurten BR, Kress D, Mertes M, Kern R, Egelhaaf M, Bischof HJ., PLoS ONE 3(12), 2008
PMID: 19107185
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
The perception of visual surfaces.
GIBSON JJ., Am J Psychol 63(3), 1950
PMID: 15432778
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
Neuronal matched filters for optic flow processing in flying insects.
Krapp HG., Int. Rev. Neurobiol. 44(), 2000
PMID: 10605643
Active and passive antennal movements during visually guided steering in flying Drosophila.
Mamiya A, Straw AD, Tomasson E, Dickinson MH., J. Neurosci. 31(18), 2011
PMID: 21543620
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Spatial organization of the pigeon tectorotundal pathway: an interdigitating topographic arrangement.
Marin G, Letelier JC, Henny P, Sentis E, Farfan G, Fredes F, Pohl N, Karten H, Mpodozis J., J. Comp. Neurol. 458(4), 2003
PMID: 12619071
Visual fields and their functions in birds
Martin G.., 2007
Influence of the behavioural context on the optocollic reflex (OCR) in pigeons (Columba livia).
Maurice M, Gioanni H, Abourachid A., J. Exp. Biol. 209(Pt 2), 2006
PMID: 16391351
A stereotaxic atlas of the brain of the zebra finch, Taeniopygia guttata
Nixdorf-Bergweiler B., Bischof H.., 2007
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
The accessory optic system. Analyzer of self-motion.
Simpson JI, Leonard CS, Soodak RE., Ann. N. Y. Acad. Sci. 545(), 1988
PMID: 3239883
Optic flow and depth perception.
Simpson WA., Spat Vis 7(1), 1993
PMID: 8494808
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060
Relations between the central nervous system and the peripheral organs
Von E.., 1954
Eye movements of laterally eyed birds are not independent.
Voss J, Bischof HJ., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411551
Tectal neurons signal impending collision of looming objects in the pigeon.
Wu LQ, Niu YQ, Yang J, Wang SR., Eur. J. Neurosci. 22(9), 2005
PMID: 16262670
Motion parallax processing in pigeon (Columba livia) pretectal neurons.
Xiao Q, Frost BJ., Eur. J. Neurosci. 37(7), 2013
PMID: 23294181
Dynamic 3D scene depth reconstruction via optical flow field rectification.
Yang Y, Liu Q, Ji R, Gao Y., PLoS ONE 7(11), 2012
PMID: 23152753

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 24065895
PubMed | Europe PMC

Suchen in

Google Scholar