Whole cell biotransformation for reductive amination reactions

Klatte S, Lorenz E, Wendisch VF (2014)
BioEngineered 5(1): 56-62.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2014
Zeitschriftentitel
BioEngineered
Band
5
Ausgabe
1
Seite(n)
56-62
ISSN
2165-5979
eISSN
2165-5987
Page URI
https://pub.uni-bielefeld.de/record/2634007

Zitieren

Klatte S, Lorenz E, Wendisch VF. Whole cell biotransformation for reductive amination reactions. BioEngineered. 2014;5(1):56-62.
Klatte, S., Lorenz, E., & Wendisch, V. F. (2014). Whole cell biotransformation for reductive amination reactions. BioEngineered, 5(1), 56-62. doi:10.4161/bioe.27151
Klatte, Stephanie, Lorenz, Elisabeth, and Wendisch, Volker F. 2014. “Whole cell biotransformation for reductive amination reactions”. BioEngineered 5 (1): 56-62.
Klatte, S., Lorenz, E., and Wendisch, V. F. (2014). Whole cell biotransformation for reductive amination reactions. BioEngineered 5, 56-62.
Klatte, S., Lorenz, E., & Wendisch, V.F., 2014. Whole cell biotransformation for reductive amination reactions. BioEngineered, 5(1), p 56-62.
S. Klatte, E. Lorenz, and V.F. Wendisch, “Whole cell biotransformation for reductive amination reactions”, BioEngineered, vol. 5, 2014, pp. 56-62.
Klatte, S., Lorenz, E., Wendisch, V.F.: Whole cell biotransformation for reductive amination reactions. BioEngineered. 5, 56-62 (2014).
Klatte, Stephanie, Lorenz, Elisabeth, and Wendisch, Volker F. “Whole cell biotransformation for reductive amination reactions”. BioEngineered 5.1 (2014): 56-62.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural.
Hossain GS, Yuan H, Li J, Shin HD, Wang M, Du G, Chen J, Liu L., Appl Environ Microbiol 83(1), 2017
PMID: 27795308
Enzymatic network for production of ether amines from alcohols.
Palacio CM, Crismaru CG, Bartsch S, Navickas V, Ditrich K, Breuer M, Abu R, Woodley JM, Baldenius K, Wu B, Janssen DB., Biotechnol Bioeng 113(9), 2016
PMID: 26915048
A synthetic biology approach for the transformation of l-α-amino acids to the corresponding enantiopure (R)- or (S)-α-hydroxy acids.
Gourinchas G, Busto E, Killinger M, Richter N, Wiltschi B, Kroutil W., Chem Commun (Camb) 51(14), 2015
PMID: 25574527

34 References

Daten bereitgestellt von Europe PubMed Central.

Industrial biocatalysis today and tomorrow.
Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B., Nature 409(6817), 2001
PMID: 11196655
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl. Environ. Microbiol. 73(15), 2007
PMID: 17545325

AUTHOR UNKNOWN, 0
Recent biocatalytic oxidation-reduction cascades.
Schrittwieser JH, Sattler J, Resch V, Mutti FG, Kroutil W., Curr Opin Chem Biol 15(2), 2010
PMID: 21130024
Enantioselective reduction of ketones with "designer cells" at high substrate concentrations: highly efficient access to functionalized optically active alcohols.
Groger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O., Angew. Chem. Int. Ed. Engl. 45(34), 2006
PMID: 16858704
Cofactor regeneration at the lab scale.
Wichmann R, Vasic-Racki D., Adv. Biochem. Eng. Biotechnol. 92(), 2005
PMID: 15791939
Cofactor recycling for selective enzymatic biotransformation of cinnamaldehyde to cinnamyl alcohol.
Zucca P, Littarru M, Rescigno A, Sanjust E., Biosci. Biotechnol. Biochem. 73(5), 2009
PMID: 19420690
Emulation of racemase activity by employing a pair of stereocomplementary biocatalysts.
Gruber CC, Nestl BM, Gross J, Hildebrandt P, Bornscheuer UT, Faber K, Kroutil W., Chemistry 13(29), 2007
PMID: 17639544
VI T, Egorov AM, Wandrey C, Kragl U. A novel, efficient regenerating method of NADPH using a new formate dehydrogenase
Seelbach K, Riebel B, Hummel W, Kula MR., 1996
Redox self-sufficient biocatalyst network for the amination of primary alcohols.
Sattler JH, Fuchs M, Tauber K, Mutti FG, Faber K, Pfeffer J, Haas T, Kroutil W., Angew. Chem. Int. Ed. Engl. 51(36), 2012
PMID: 22887645
NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
Buhler B, Park JB, Blank LM, Schmid A., Appl. Environ. Microbiol. 74(5), 2008
PMID: 18192422
Regio- and Stereoselective Biohydroxylations with a Recombinant Escherichia coli Expressing P450(pyr) Monooxygenase of Sphingomonas Sp. HXN-200
Zhang W, Tang WL, Wang ZS, Li Z., 2010

AUTHOR UNKNOWN, 0
Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents.
Kieboom J, Dennis JJ, Zylstra GJ, de Bont JA., J. Bacteriol. 180(24), 1998
PMID: 9852029
Ethambutol-mediated cell wall modification in recombinant Corynebacterium glutamicum increases the biotransformation rates of cyclohexanone derivatives.
Yun JY, Lee JE, Yang KM, Cho S, Kim A, Kwon YU, Kwon YE, Park JB., Bioprocess Biosyst Eng 35(1-2), 2011
PMID: 21909677
Advances in biocatalytic synthesis of pharmaceutical intermediates.
Panke S, Wubbolts M., Curr Opin Chem Biol 9(2), 2005
PMID: 15811804
Whole organism biocatalysis.
Ishige T, Honda K, Shimizu S., Curr Opin Chem Biol 9(2), 2005
PMID: 15811802
High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration.
Xu Z, Jing K, Liu Y, Cen P., J. Ind. Microbiol. Biotechnol. 34(1), 2006
PMID: 16941118
Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering.
Chemler JA, Fowler ZL, McHugh KP, Koffas MA., Metab. Eng. 12(2), 2009
PMID: 19628048
Biotechnological production of amino acids and derivatives: current status and prospects.
Leuchtenberger W, Huthmacher K, Drauz K., Appl. Microbiol. Biotechnol. 69(1), 2005
PMID: 16195792
Incorporation of unnatural amino acids for synthetic biology.
Voloshchuk N, Montclare JK., Mol Biosyst 6(1), 2009
PMID: 20024068
Industrial production of L-alanine using immobilized Escherichia coli and Pseudomonas dacunhae.
Chibata I, Tosa T, Takamatsu S., Microbiol. Sci. 1(3), 1984
PMID: 6444100
L-Phenylalanine Dehydrogenase from Brevibacterium Sp for Production of L-Phenylalanine by Reductive Amination of Phenylpyruvate
Hummel W, Schmidt E, Wandrey C, Kula MR., 1986
“Second-Generation process” for the synthesis of L-neopentylglycine: Asymmetric reductive amination using a recombinant whole cell catalyst
Groger H, May O, Werner H, Menzel A, Altenbuchner JA., 2006
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24406456
PubMed | Europe PMC

Suchen in

Google Scholar