Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum

Heider S, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF (2014)
Applied Microbiology and Biotechnology 98(3): 1223-1235.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Heider, SabineUniBi; Peters-Wendisch, PetraUniBi; Netzer, Roman; Stafnes, Marit; Brautaset, Trygve; Wendisch, Volker F.UniBi
Abstract / Bemerkung
The yellow-pigmented soil bacterium Corynebacterium glutamicum ATCC13032 is accumulating the cyclic C-50 carotenoid decaprenoxanthin and its glucosides. Carotenoid pathway engineering was previously shown to allow for efficient lycopene production. Here, engineering of C. glutamicum for production of endogenous decaprenoxanthin as well as of the heterologous C-50 carotenoids C.p.450 and sarcinaxanthin is described. Plasmid-borne overexpression of genes for lycopene cyclization and hydroxylation from C. glutamicum, Dietzia sp., and Micrococcus luteus, in a lycopene-producing platform strain constructed here, resulted in accumulation of these three C-50 carotenoids to concentrations of about 3-4 mg/g CDW. Chromosomal deletion of a putative carotenoid glycosyltransferase gene cg0730/crtX in these strains entailed production of non-glucosylated derivatives of decaprenoxanthin, C.p.450, and sarcinaxanthin, respectively. Upon introduction of glucosyltransferase genes from M. luteus, C. glutamicum, and Pantoea ananatis, these hydroxylated C-50 carotenoids were glucosylated. We here also demonstrate production of the C-40 carotenoids beta-carotene and zeaxanthin in recombinant C. glutamicum strains and co-expression of the P. ananatis crtX gene was used to obtain glucosylated zeaxanthin. Together, our results show that C. glutamicum is a potentially valuable host for production of a wide range of glucosylated C-40 and C-50 carotenoids.
Stichworte
Zeaxanthin; beta-carotene; Lycopene; Sarcinaxanthin; Decaprenoxanthin; Glucosyltransferase; crtX; Corynebacterium glutamicum; C-50 carotenoid production
Erscheinungsjahr
2014
Zeitschriftentitel
Applied Microbiology and Biotechnology
Band
98
Ausgabe
3
Seite(n)
1223-1235
ISSN
0175-7598
eISSN
1432-0614
Page URI
https://pub.uni-bielefeld.de/record/2632272

Zitieren

Heider S, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF. Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology. 2014;98(3):1223-1235.
Heider, S., Peters-Wendisch, P., Netzer, R., Stafnes, M., Brautaset, T., & Wendisch, V. F. (2014). Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 98(3), 1223-1235. doi:10.1007/s00253-013-5359-y
Heider, Sabine, Peters-Wendisch, Petra, Netzer, Roman, Stafnes, Marit, Brautaset, Trygve, and Wendisch, Volker F. 2014. “Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum”. Applied Microbiology and Biotechnology 98 (3): 1223-1235.
Heider, S., Peters-Wendisch, P., Netzer, R., Stafnes, M., Brautaset, T., and Wendisch, V. F. (2014). Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology 98, 1223-1235.
Heider, S., et al., 2014. Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 98(3), p 1223-1235.
S. Heider, et al., “Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum”, Applied Microbiology and Biotechnology, vol. 98, 2014, pp. 1223-1235.
Heider, S., Peters-Wendisch, P., Netzer, R., Stafnes, M., Brautaset, T., Wendisch, V.F.: Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology. 98, 1223-1235 (2014).
Heider, Sabine, Peters-Wendisch, Petra, Netzer, Roman, Stafnes, Marit, Brautaset, Trygve, and Wendisch, Volker F. “Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum”. Applied Microbiology and Biotechnology 98.3 (2014): 1223-1235.

28 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica.
Vila E, Hornero-Méndez D, Azziz G, Lareo C, Saravia V., Biotechnol Rep (Amst) 21(), 2019
PMID: 30705834
Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum.
Schwentner A, Feith A, Münch E, Stiefelmaier J, Lauer I, Favilli L, Massner C, Öhrlein J, Grund B, Hüser A, Takors R, Blombach B., Biotechnol Biofuels 12(), 2019
PMID: 30962820
Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering.
Abdel-Mawgoud AM, Stephanopoulos G., Synth Syst Biotechnol 3(1), 2018
PMID: 29911195
Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Wichmann J, Baier T, Frohwitter J, Lauersen KJ, Risse JM, Peters-Wendisch P, Kruse O, Wendisch VF., Genes (Basel) 9(4), 2018
PMID: 29673223
Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis.
Xie L, Zhang L, Wang C, Wang X, Xu YM, Yu H, Wu P, Li S, Han L, Gunatilaka AAL, Wei X, Lin M, Molnár I, Xu Y., Proc Natl Acad Sci U S A 115(22), 2018
PMID: 29760061
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Progress in Microbial Carotenoids Production.
Saini RK, Keum YS., Indian J Microbiol 57(1), 2017
PMID: 28148991
Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum.
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P., Front Microbiol 8(), 2017
PMID: 28484430
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28552565
Synthetic biology approaches for the production of plant metabolites in unicellular organisms.
Moses T, Mehrshahi P, Smith AG, Goossens A., J Exp Bot 68(15), 2017
PMID: 28449101
Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF., Mar Drugs 14(7), 2016
PMID: 27376307
Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF., BMC Microbiol 16(1), 2016
PMID: 27492186
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grünberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl Environ Microbiol 82(20), 2016
PMID: 27520809
Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica.
Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S, Nakamura S., J Bacteriol 197(9), 2015
PMID: 25712483
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J Biotechnol 191(), 2014
PMID: 24910970
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304.
Kim SH, Kim JH, Lee BY, Lee PC., Appl Microbiol Biotechnol 98(24), 2014
PMID: 25193422
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J 281(21), 2014
PMID: 25181035

65 References

Daten bereitgestellt von Europe PubMed Central.


S, J Gen Appl Microbiol 13(), 1967
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712

G, 2008

G, 2004
An evolving hierarchical family classification for glycosyltransferases.
Coutinho PM, Deleury E, Davies GJ, Henrissat B., J. Mol. Biol. 328(2), 2003
PMID: 12691742
From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant
Cutzu R, Coi A, Rosso F, Bardi L, Ciani M, Budroni M, Zara G, Zara S, Mannazzu I., World J. Microbiol. Biotechnol. 29(6), 2013
PMID: IND500664511

AUTHOR UNKNOWN, 0

L, 2005
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382
A new bioinformatics analysis tools framework at EMBL-EBI.
Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R., Nucleic Acids Res. 38(Web Server issue), 2010
PMID: 20439314
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
The isolation and description of two marine micro-organisms with special reference to their pigment production.
HODGKISS W, LISTON J, GOODWIN TW, JAMIKORN M., J. Gen. Microbiol. 11(3), 1954
PMID: 13221765
Functional assignment of Erwinia herbicola Eho10 carotenoid genes expressed in Escherichia coli.
Hundle B, Alberti M, Nievelstein V, Beyer P, Kleinig H, Armstrong GA, Burke DH, Hearst JE., Mol. Gen. Genet. 245(4), 1994
PMID: 7808389
Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site.
Hundle BS, O'Brien DA, Alberti M, Beyer P, Hearst JE., Proc. Natl. Acad. Sci. U.S.A. 89(19), 1992
PMID: 1409639
The chemistry of novel xanthophyll carotenoids.
Jackson H, Braun CL, Ernst H., Am. J. Cardiol. 101(10A), 2008
PMID: 18474275
Microbial carotenoids.
Johnson EA, Schroeder WA., Adv. Biochem. Eng. Biotechnol. 53(), 1996
PMID: 8578971
Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates.
Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G., Arch. Microbiol. 176(3), 2001
PMID: 11511870
Continuous control of the flow in biochemical pathways through 5' untranslated region sequence modifications in mRNA expressed from the broad-host-range promoter Pm.
Lale R, Berg L, Stuttgen F, Netzer R, Stafsnes M, Brautaset T, Vee Aune TE, Valla S., Appl. Environ. Microbiol. 77(8), 2011
PMID: 21335387

PC, Appl Microbiol Biotechnol 60(1–2), 2002

TM, Bioresour Technol (), 2013

AUTHOR UNKNOWN, 0
Antioxidant activities of carotenes and xanthophylls.
Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA., FEBS Lett. 384(3), 1996
PMID: 8617362
Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli.
Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K., J. Bacteriol. 172(12), 1990
PMID: 2254247
Antioxidant activities of astaxanthin and related carotenoids.
Naguib YM., J. Agric. Food Chem. 48(4), 2000
PMID: 10775364
Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus.
Pelz A, Wieland KP, Putzbach K, Hentschel P, Albert K, Gotz F., J. Biol. Chem. 280(37), 2005
PMID: 16020541
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586

AUTHOR UNKNOWN, 0
Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways.
Rodriguez-Villalon A, Perez-Gil J, Rodriguez-Concepcion M., J. Biotechnol. 135(1), 2008
PMID: 18417238

J, 2001

G, 2005

H, Appl Microbiol Biot 19(6), 1984

T, Arch Microbiol 159(), 1993
Diversity of carotenoid synthesis gene clusters from environmental Enterobacteriaceae strains.
Sedkova N, Tao L, Rouviere PE, Cheng Q., Appl. Environ. Microbiol. 71(12), 2005
PMID: 16332796
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498

YB, J Microbiol Biotechn 19(12), 2009
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Thiamine and the carotenoid pigments of Corynebacterium poinsettiae.
STARR MP, SAPERSTEIN S., Arch. Biochem. Biophys. 43(1), 1953
PMID: 13031671
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis.
Tatituri RV, Illarionov PA, Dover LG, Nigou J, Gilleron M, Hitchen P, Krumbach K, Morris HR, Spencer N, Dell A, Eggeling L, Besra GS., J. Biol. Chem. 282(7), 2006
PMID: 17179146
Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum.
Tsuchidate T, Tateno T, Okai N, Tanaka T, Ogino C, Kondo A., Appl. Microbiol. Biotechnol. 90(3), 2011
PMID: 21305281
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
Biological functions of carotenoids--diversity and evolution.
Vershinin A., Biofactors 10(2-3), 1999
PMID: 10609869
High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.
Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ., Appl. Environ. Microbiol. 73(13), 2007
PMID: 17496128

A, Tetrahedron Lett 39(22), 1998
Just-in-time transcription program in metabolic pathways.
Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U., Nat. Genet. 36(5), 2004
PMID: 15107854
Engineering central metabolic modules of Escherichia coli for improving β-carotene production.
Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y., Metab. Eng. 17(), 2013
PMID: 23500001
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24270893
PubMed | Europe PMC

Suchen in

Google Scholar