Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

Harder A, Dieding M, Walhorn V, Degenhard S, Brodehl A, Wege C, Milting H, Anselmetti D (2013)
Beilstein Journal of Nanotechnology 4: 510-516.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Harder, AlexanderUniBi; Dieding, Mareike; Walhorn, VolkerUniBi ; Degenhard, Sven; Brodehl, Andreas; Wege, Christina; Milting, Hendrik; Anselmetti, DarioUniBi
Abstract / Bemerkung
Both fluorescence imaging and atomic force microscopy (AFM) are highly versatile and extensively used in applications ranging from nanotechnology to life sciences. In fluorescence microscopy luminescent dyes serve as position markers. Moreover, they can be used as active reporters of their local vicinity. The dipolar coupling of the tip with the incident light and the fluorophore give rise to a local field and fluorescence enhancement. AFM topographic imaging allows for resolutions down to the atomic scale. It can be operated in vacuum, under ambient conditions and in liquids. This makes it ideal for the investigation of a wide range of different samples. Furthermore an illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM) enables concurrent high resolution topography and fluorescence imaging. Commonly, among the various (apertureless) SNOM approaches metallic or metallized probes are used. Here, we report on our custom-built aSNOM setup, which uses commercially available monolithic silicon AFM cantilevers. The field enhancement confined to the tip apex facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which are fluorescently labeled to a low degree. The simultaneous recording of topography and fluorescence data allows for the exact localization of distinct building blocks within the superordinate structures.
Erscheinungsjahr
2013
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
4
Seite(n)
510-516
ISSN
2190-4286
eISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2632059

Zitieren

Harder A, Dieding M, Walhorn V, et al. Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. Beilstein Journal of Nanotechnology. 2013;4:510-516.
Harder, A., Dieding, M., Walhorn, V., Degenhard, S., Brodehl, A., Wege, C., Milting, H., et al. (2013). Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. Beilstein Journal of Nanotechnology, 4, 510-516. doi:10.3762/bjnano.4.60
Harder, Alexander, Dieding, Mareike, Walhorn, Volker, Degenhard, Sven, Brodehl, Andreas, Wege, Christina, Milting, Hendrik, and Anselmetti, Dario. 2013. “Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin”. Beilstein Journal of Nanotechnology 4: 510-516.
Harder, A., Dieding, M., Walhorn, V., Degenhard, S., Brodehl, A., Wege, C., Milting, H., and Anselmetti, D. (2013). Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. Beilstein Journal of Nanotechnology 4, 510-516.
Harder, A., et al., 2013. Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. Beilstein Journal of Nanotechnology, 4, p 510-516.
A. Harder, et al., “Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin”, Beilstein Journal of Nanotechnology, vol. 4, 2013, pp. 510-516.
Harder, A., Dieding, M., Walhorn, V., Degenhard, S., Brodehl, A., Wege, C., Milting, H., Anselmetti, D.: Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin. Beilstein Journal of Nanotechnology. 4, 510-516 (2013).
Harder, Alexander, Dieding, Mareike, Walhorn, Volker, Degenhard, Sven, Brodehl, Andreas, Wege, Christina, Milting, Hendrik, and Anselmetti, Dario. “Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin”. Beilstein Journal of Nanotechnology 4 (2013): 510-516.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Molecular insights into cardiomyopathies associated with desmin (DES) mutations.
Brodehl A, Gaertner-Rommel A, Milting H., Biophys Rev 10(4), 2018
PMID: 29926427
Dynamic DNA-controlled "stop-and-go" assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes.
Schneider A, Eber FJ, Wenz NL, Altintoprak K, Jeske H, Eiben S, Wege C., Nanoscale 8(47), 2016
PMID: 27878174
Optical near-fields & nearfield optics.
Meixner AJ, Leiderer P., Beilstein J Nanotechnol 5(), 2014
PMID: 24605284
Application perspectives of localization microscopy in virology.
Cremer C, Kaufmann R, Gunkel M, Polanski F, Müller P, Dierkes R, Degenhard S, Wege C, Hausmann M, Birk U., Histochem Cell Biol 142(1), 2014
PMID: 24614971

35 References

Daten bereitgestellt von Europe PubMed Central.


Novotny L., 2007

Pohl D, Denk W, Lanz M., 1984

Frey H, Bolwien C, Brandenburg A, Ros R, Anselmetti D., 2006

Frey H, Paskarbeit J, Anselmetti D., 2009
Fluorescence near-field microscopy of DNA at sub-10 nm resolution.
Ma Z, Gerton JM, Wade LA, Quake SR., Phys. Rev. Lett. 97(26), 2006
PMID: 17280412

Yoskovitz E, Hadar I, Sitt A, Lieberman I, Banin U., 2011
Background suppression in near-field optical imaging.
Hoppener C, Beams R, Novotny L., Nano Lett. 9(2), 2009
PMID: 19170554
Enhancement and quenching of single-molecule fluorescence.
Anger P, Bharadwaj P, Novotny L., Phys. Rev. Lett. 96(11), 2006
PMID: 16605818
Nanoscale spectroscopic imaging of organic semiconductor films by plasmon-polariton coupling.
Zhang D, Heinemeyer U, Stanciu C, Sackrow M, Braun K, Hennemann LE, Wang X, Scholz R, Schreiber F, Meixner AJ., Phys. Rev. Lett. 104(5), 2010
PMID: 20366779
Distance dependence of near-field fluorescence enhancement and quenching of single quantum dots.
Walhorn V, Paskarbeit J, Frey HG, Harder A, Anselmetti D., Beilstein J Nanotechnol 2(), 2011
PMID: 22003470
Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips.
Eckel R, Walhorn V, Pelargus C, Martini J, Enderlein J, Nann T, Anselmetti D, Ros R., Small 3(1), 2007
PMID: 17294466
Influencing the angular emission of a single molecule.
Gersen H, Garcia-Parajo MF, Novotny L, Veerman JA, Kuipers L, van Hulst NF ., Phys. Rev. Lett. 85(25), 2000
PMID: 11135984
High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip.
Frey HG, Witt S, Felderer K, Guckenberger R., Phys. Rev. Lett. 93(20), 2004
PMID: 15600907

Schulz O, Zhao Z, Ward A, Koenig M, Koberling F, Liu Y, Enderlein J, Yan H, Ros R., 2013

Muranishi M, Sato K, Hosaka S, Kikukawa A, Shintani T, Ito K., 1997

Farahani J, Eisler H-J, Pohl D, Pavius M, Flückiger P, Gasser P, Hecht B., 2007

Göttlich H, Heckl W., 1995
Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene.
van Tintelen JP, Van Gelder IC, Asimaki A, Suurmeijer AJ, Wiesfeld AC, Jongbloed JD, van den Wijngaard A, Kuks JB, van Spaendonck-Zwarts KY, Notermans N, Boven L, van den Heuvel F, Veenstra-Knol HE, Saffitz JE, Hofstra RM, van den Berg MP., Heart Rhythm 6(11), 2009
PMID: 19879535
Desmin myopathy with severe cardiomyopathy in a Uruguayan family due to a codon deletion in a new location within the desmin 1A rod domain.
Vernengo L, Chourbagi O, Panuncio A, Lilienbaum A, Batonnet-Pichon S, Bruston F, Rodrigues-Lima F, Mesa R, Pizzarossa C, Demay L, Richard P, Vicart P, Rodriguez MM., Neuromuscul. Disord. 20(3), 2010
PMID: 20133133
De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy.
Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, Brodehl A, Dieding M, Walhorn V, Anselmetti D, Gerdes D, Bohms B, Schulz U, Zu Knyphausen E, Vorgerd M, Gummert J, Milting H., Hum. Mol. Genet. 19(23), 2010
PMID: 20829228
Desmin mutations as a cause of right ventricular heart failure affect the intercalated disks.
Otten E, Asimaki A, Maass A, van Langen IM, van der Wal A, de Jonge N, van den Berg MP, Saffitz JE, Wilde AA, Jongbloed JD, van Tintelen JP., Heart Rhythm 7(8), 2010
PMID: 20423733
Functional characterization of desmin mutant p.P419S.
Brodehl A, Dieding M, Cakar H, Klauke B, Walhorn V, Gummert J, Anselmetti D, Milting H., Eur. J. Hum. Genet. 21(6), 2012
PMID: 23032110
Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants.
Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, Saric T, Klauke B, Gummert J, Anselmetti D, Heilemann M, Nienhaus GU, Milting H., J. Biol. Chem. 287(19), 2012
PMID: 22403400
A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin.
Kirmse R, Portet S, Mucke N, Aebi U, Herrmann H, Langowski J., J. Biol. Chem. 282(25), 2007
PMID: 17403663

Lewandowski D., 2005

Gerasopoulos K, McCarthy M, Royston E, Culver J, Ghodssi R., 2008

Demir M, Stowell M., 2002
Patterned assembly of genetically modified viral nanotemplates via nucleic acid hybridization.
Yi H, Nisar S, Lee SY, Powers MA, Bentley WE, Payne GF, Ghodssi R, Rubloff GW, Harris MT, Culver JN., Nano Lett. 5(10), 2005
PMID: 16218712
Virus-templated synthesis of ZnO nanostructures and formation of field-effect transistors.
Atanasova P, Rothenstein D, Schneider JJ, Hoffmann RC, Dilfer S, Eiben S, Wege C, Jeske H, Bill J., Adv. Mater. Weinheim 23(42), 2011
PMID: 21959928
Bottom-up-assembled nanostar colloids of gold cores and tubes derived from tobacco mosaic virus.
Eber FJ, Eiben S, Jeske H, Wege C., Angew. Chem. Int. Ed. Engl. 52(28), 2013
PMID: 23828792
TMV nanorods with programmed longitudinal domains of differently addressable coat proteins.
Geiger FC, Eber FJ, Eiben S, Mueller A, Jeske H, Spatz JP, Wege C., Nanoscale 5(9), 2013
PMID: 23519401
Deconstructing the late phase of vimentin assembly by total internal reflection fluorescence microscopy (TIRFM).
Winheim S, Hieb AR, Silbermann M, Surmann EM, Wedig T, Herrmann H, Langowski J, Mucke N., PLoS ONE 6(4), 2011
PMID: 21544245
A simple technique for purification of tobacco mosaic virus in large quantities.
Gooding GV Jr, Hebert TT., Phytopathology 57(11), 1967
PMID: 6075009
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24062977
PubMed | Europe PMC

Suchen in

Google Scholar