p-adic L-functions of automorphic forms

Deppe H (2013)
Bielefeld: Universitätsbibliothek Bielefeld.

Bielefelder E-Dissertation| Englisch
 
Download
OA
Betreuer*in
Spieß, Michael
Abstract / Bemerkung
Let F be a number field, p a prime number. To an (adelic) automorphic representation of GL2 over F (with certain conditions at places above p and ∞) we construct a p-adic L-function which interpolates the complex (Jacquet-Langlands) L-function at the central critical point. This is a generalization of a construction by Spieß over totally real fields. It seems well-suited to generalize his proof of the exceptional zero conjecture, which describes the order of vanishing of the p-adic L-function of an elliptic curve over F in terms of the Hasse-Weil L-function.
Stichworte
p-adic L-function; exceptional zero conjecture
Jahr
2013
Seite(n)
52
Page URI
https://pub.uni-bielefeld.de/record/2629389

Zitieren

Deppe H. p-adic L-functions of automorphic forms. Bielefeld: Universitätsbibliothek Bielefeld; 2013.
Deppe, H. (2013). p-adic L-functions of automorphic forms. Bielefeld: Universitätsbibliothek Bielefeld.
Deppe, H. (2013). p-adic L-functions of automorphic forms. Bielefeld: Universitätsbibliothek Bielefeld.
Deppe, H., 2013. p-adic L-functions of automorphic forms, Bielefeld: Universitätsbibliothek Bielefeld.
H. Deppe, p-adic L-functions of automorphic forms, Bielefeld: Universitätsbibliothek Bielefeld, 2013.
Deppe, H.: p-adic L-functions of automorphic forms. Universitätsbibliothek Bielefeld, Bielefeld (2013).
Deppe, Holger. p-adic L-functions of automorphic forms. Bielefeld: Universitätsbibliothek Bielefeld, 2013.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:31:29Z
MD5 Prüfsumme
73c26395f7d279dbf272e027ad9721c4

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar