A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants

Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D (2013)
Molecular plant 6(5): 1518-1530.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and super-resolution fluorescence microscopy in living organisms. Here, we describe variants of the reversibly photoswitchable fluorescent proteins rsFastLime, bsDronpa, and Padron that have been codon-optimized for the use in transgenic Arabidopsis plants. The synthetic proteins, designated rsFastLIME-s, bsDRONPA-s, and PADRON C-s, showed photophysical properties and switching behavior comparable to those reported for the original proteins. By combining the 'positively switchable' PADRON C-s with the 'negatively switchable' rsFastLIME-s or bsDRONPA-s, two different fluorescent reporter proteins could be imaged at the same wavelength upon transient expression in Nicotiana benthamiana cells. Thus, co-localization analysis can be performed using only a single detection channel. Furthermore, the proteins were used to tag the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) in transgenic Arabidopsis plants. Because the new reversibly photoswitchable fluorescent proteins show an increase in signal strength during each photoactivation cycle, we were able to generate a large number of scans of the same region and reconstruct 3-D images of AtGRP7 expression in the root tip. Upon photoactivation of the AtGRP7:rsFastLIME-s fusion protein in a defined region of a transgenic Arabidopsis root, spreading of the fluorescence signal into adjacent regions was observed, indicating that movement from cell to cell can be monitored. Our results demonstrate that rsFastLIME-s, bsDRONPA-s, and PADRON C-s are versatile fluorescent markers in plants. Furthermore, the proteins also show strong fluorescence in mammalian cells including COS-7 and HeLa cells.
Erscheinungsjahr
2013
Zeitschriftentitel
Molecular plant
Band
6
Ausgabe
5
Seite(n)
1518-1530
ISSN
1674-2052
eISSN
1752-9867
Page URI
https://pub.uni-bielefeld.de/record/2629112

Zitieren

Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D. A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. Molecular plant. 2013;6(5):1518-1530.
Lummer, M., Humpert, F., Wiedenlübbert, M., Sauer, M., Schüttpelz, M., & Staiger, D. (2013). A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. Molecular plant, 6(5), 1518-1530. doi:10.1093/mp/sst040
Lummer, Martina, Humpert, Fabian, Wiedenlübbert, Matthias, Sauer, Markus, Schüttpelz, Mark, and Staiger, Dorothee. 2013. “A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants”. Molecular plant 6 (5): 1518-1530.
Lummer, M., Humpert, F., Wiedenlübbert, M., Sauer, M., Schüttpelz, M., and Staiger, D. (2013). A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. Molecular plant 6, 1518-1530.
Lummer, M., et al., 2013. A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. Molecular plant, 6(5), p 1518-1530.
M. Lummer, et al., “A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants”, Molecular plant, vol. 6, 2013, pp. 1518-1530.
Lummer, M., Humpert, F., Wiedenlübbert, M., Sauer, M., Schüttpelz, M., Staiger, D.: A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. Molecular plant. 6, 1518-1530 (2013).
Lummer, Martina, Humpert, Fabian, Wiedenlübbert, Matthias, Sauer, Markus, Schüttpelz, Mark, and Staiger, Dorothee. “A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants”. Molecular plant 6.5 (2013): 1518-1530.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Advances in Imaging Plant Cell Dynamics.
Komis G, Novák D, Ovečka M, Šamajová O, Šamaj J., Plant Physiol 176(1), 2018
PMID: 29167354
A Simple Separation Method of the Protein and Polystyrene Bead-Labeled Protein for Enhancing the Performance of Fluorescent Sensor.
Kim HJ, Kang DH, Yang SH, Lee E, Ha T, Lee BC, Kim Y, Hwang KS, Shin HJ, Kim J., J Anal Methods Chem 2018(), 2018
PMID: 30116650
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation.
Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D., Genes (Basel) 9(12), 2018
PMID: 30544736
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J., Biotechnol Adv 33(6 pt 2), 2015
PMID: 25819757
Fluorescent proteins for live-cell imaging with super-resolution.
Nienhaus K, Nienhaus GU., Chem Soc Rev 43(4), 2014
PMID: 24056711

46 References

Daten bereitgestellt von Europe PubMed Central.

Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting.
Ando R, Mizuno H, Miyawaki A., Science 306(5700), 2004
PMID: 15550670
Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy.
Andresen M, Stiel AC, Folling J, Wenzel D, Schonle A, Egner A, Eggeling C, Hell SW, Jakobs S., Nat. Biotechnol. 26(9), 2008
PMID: 18724362
Reversible photoswitching in fluorescent proteins: a mechanistic view.
Bourgeois D, Adam V., IUBMB Life 64(6), 2012
PMID: 22535712
A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications.
Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T., Proc. Natl. Acad. Sci. U.S.A. 109(12), 2012
PMID: 22375034
Glow in the dark: fluorescent proteins as cell and tissue-specific markers in plants
Ckurshumova, Mol. Plant 4(), 2012
Intracellular shuttling of a Drosophila APC tumour suppressor homolog.
Cliffe A, Mieszczanek J, Bienz M., BMC Cell Biol. 5(), 2004
PMID: 15458577
FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis.
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G., Science 316(5827), 2007
PMID: 17446353
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy.
Greenbaum A, Luo W, Su TW, Gorocs Z, Xue L, Isikman SO, Coskun AF, Mudanyali O, Ozcan A., Nat. Methods 9(9), 2012
PMID: 22936170
Diffraction-unlimited all-optical imaging and writing with a photochromic GFP.
Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW., Nature 478(7368), 2011
PMID: 21909116
Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa.
Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J., Proc. Natl. Acad. Sci. U.S.A. 102(27), 2005
PMID: 15972810
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity
Jeong, J. Biolog. Chem 286(), 2011
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana.
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H., Plant J. 55(3), 2008
PMID: 18410480
T-DNA gene 5 of Agrobacterium modulates auxin response by autoregulated synthesis of a growth hormone antagonist in plants.
Korber H, Strizhov N, Staiger D, Feldwisch J, Olsson O, Sandberg G, Palme K, Schell J, Koncz C., EMBO J. 10(13), 1991
PMID: 1756712
Studying protein dynamics in living cells.
Lippincott-Schwartz J, Snapp E, Kenworthy A., Nat. Rev. Mol. Cell Biol. 2(6), 2001
PMID: 11389468
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schuttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time.
Martini J, Schmied K, Palmisano R, Toensing K, Anselmetti D, Merkle T., J. Struct. Biol. 158(3), 2007
PMID: 17363273
Intercellular movement of the putative transcription factor SHR in root patterning.
Nakajima K, Sena G, Nawy T, Benfey PN., Nature 413(6853), 2001
PMID: 11565032
Dynamic and polarized muscle cell behaviors accompany tail morphogenesis in the ascidian Ciona intestinalis.
Passamaneck YJ, Hadjantonakis AK, Di Gregorio A., PLoS ONE 2(8), 2007
PMID: 17684560
A photoactivatable GFP for selective photolabeling of proteins and cells.
Patterson GH, Lippincott-Schwartz J., Science 297(5588), 2002
PMID: 12228718
Photobleaching in two-photon excitation microscopy.
Patterson GH, Piston DW., Biophys. J. 78(4), 2000
PMID: 10733993
Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy.
Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW., Biophys. J. 73(5), 1997
PMID: 9370472
The fluorescence dynamics of single molecules of green fluorescent protein
Peterman, J. Phys. Chem 103(), 1999
Fluorescence Intensity Decay Shape Analysis Microscopy (FIDSAM) for quantitative and sensitive live-cell imaging: a novel technique for fluorescence microscopy of endogenously expressed fusion-proteins
Schleifenbaum, Mol. Plant 3(), 2009
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol. Biol. Rep. 37(2), 2009
PMID: 19672695
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schoning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J. 52(6), 2007
PMID: 17924945
A guide to choosing fluorescent proteins.
Shaner NC, Steinbach PA, Tsien RY., Nat. Methods 2(12), 2005
PMID: 16299475
The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function.
Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C., Genes Dev. 17(2), 2003
PMID: 12533513
Circadian clock-regulated expression of an RNA-binding protein in Arabidopsis: characterisation of a minimal promoter element
Staiger, Molecular General Genetics 261(), 1999
1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants.
Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC., Biochem. J. 402(1), 2007
PMID: 17117927
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schoning JC, Alfano JR, Staiger D., Plant J. 56(2), 2008
PMID: 18573194
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol. 10(), 2010
PMID: 20946635
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
Exo- and endocytotic trafficking of SCAMP2.
Toyooka K, Matsuoka K., Plant Signal Behav 4(12), 2009
PMID: 20514246
The green fluorescent protein.
Tsien RY., Annu. Rev. Biochem. 67(), 1998
PMID: 9759496
Regulation and identity of florigen: FLOWERING LOCUS T moves center stage.
Turck F, Fornara F, Coupland G., Annu Rev Plant Biol 59(), 2008
PMID: 18444908
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756317
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23434876
PubMed | Europe PMC

Suchen in

Google Scholar