Human Activity Classification with Online Growing Neural Gas

Panzner M, Beyer O, Cimiano P (2013)
In: Workshop on New Challenges in Neural Computation (NC2). 106-113.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
In this paper we present an online approach to human ac- tivity classification based on Online Growing Neural Gas (OGNG). In contrast to state-of-the-art approaches that perform training in an offline fashion, our approach is online in the sense that it circumvents the need to store any training examples, processing the data on the fly and in one pass. The approach is thus particularly suitable in life-long learning settings where never-ending streams of data arise. We propose an archi- tecture that consists of two layers, allowing the storage of human actions in a more memory efficient structure. While the first layer (feature map) dynamically clusters Space-Time Interest Points (STIP) and serves as basis for the creation of histogram-based signatures of human actions, the second layer (class map) builds a classification model that relies on these human action signatures. We present experimental results on the KTH activity dataset showing that our approach has comparable per- formance to a Support Vector Machine (SVM) while performing online and avoiding to store examples explicitly.
Erscheinungsjahr
2013
Titel des Konferenzbandes
Workshop on New Challenges in Neural Computation (NC2)
Seite(n)
106-113
Page URI
https://pub.uni-bielefeld.de/record/2624505

Zitieren

Panzner M, Beyer O, Cimiano P. Human Activity Classification with Online Growing Neural Gas. In: Workshop on New Challenges in Neural Computation (NC2). 2013: 106-113.
Panzner, M., Beyer, O., & Cimiano, P. (2013). Human Activity Classification with Online Growing Neural Gas. Workshop on New Challenges in Neural Computation (NC2), 106-113.
Panzner, Maximilian, Beyer, Oliver, and Cimiano, Philipp. 2013. “Human Activity Classification with Online Growing Neural Gas”. In Workshop on New Challenges in Neural Computation (NC2), 106-113.
Panzner, M., Beyer, O., and Cimiano, P. (2013). “Human Activity Classification with Online Growing Neural Gas” in Workshop on New Challenges in Neural Computation (NC2) 106-113.
Panzner, M., Beyer, O., & Cimiano, P., 2013. Human Activity Classification with Online Growing Neural Gas. In Workshop on New Challenges in Neural Computation (NC2). pp. 106-113.
M. Panzner, O. Beyer, and P. Cimiano, “Human Activity Classification with Online Growing Neural Gas”, Workshop on New Challenges in Neural Computation (NC2), 2013, pp.106-113.
Panzner, M., Beyer, O., Cimiano, P.: Human Activity Classification with Online Growing Neural Gas. Workshop on New Challenges in Neural Computation (NC2). p. 106-113. (2013).
Panzner, Maximilian, Beyer, Oliver, and Cimiano, Philipp. “Human Activity Classification with Online Growing Neural Gas”. Workshop on New Challenges in Neural Computation (NC2). 2013. 106-113.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:18Z
MD5 Prüfsumme
6c5a9555562b7babccb2528c7f9fa5bd


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar