Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase

Leßmeier L, Höfener M, Wendisch VF (2013)
Microbiology 159(Pt_12): 2651-2662.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking ald and fadH could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, C. glutamicum ΔaldΔfadH did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from C. glutamicum was purified from recombinant Escherichia coli and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed Km values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a Vmax of 7.7 U mg(-1). FadH from C. glutamicum also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (Km = 330 mM, Vmax = 9.6 U mg(-1)), 1-propanol (Km = 150 mM, Vmax = 5 U mg(-1)) and 1-butanol (Km = 50 mM, Vmax = 0.8 U mg(-1)). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of C. glutamicum to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.
Page URI


Leßmeier L, Höfener M, Wendisch VF. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology. 2013;159(Pt_12):2651-2662.
Leßmeier, L., Höfener, M., & Wendisch, V. F. (2013). Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology, 159(Pt_12), 2651-2662. doi:10.1099/mic.0.072413-0
Leßmeier, Lennart, Höfener, Michael, and Wendisch, Volker F. 2013. “Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase”. Microbiology 159 (Pt_12): 2651-2662.
Leßmeier, L., Höfener, M., and Wendisch, V. F. (2013). Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology 159, 2651-2662.
Leßmeier, L., Höfener, M., & Wendisch, V.F., 2013. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology, 159(Pt_12), p 2651-2662.
L. Leßmeier, M. Höfener, and V.F. Wendisch, “Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase”, Microbiology, vol. 159, 2013, pp. 2651-2662.
Leßmeier, L., Höfener, M., Wendisch, V.F.: Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology. 159, 2651-2662 (2013).
Leßmeier, Lennart, Höfener, Michael, and Wendisch, Volker F. “Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase”. Microbiology 159.Pt_12 (2013): 2651-2662.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum.
Tsuge Y, Kudou M, Kawaguchi H, Ishii J, Hasunuma T, Kondo A., Appl Microbiol Biotechnol 100(6), 2016
PMID: 26541332
Formaldehyde Stress Responses in Bacterial Pathogens.
Chen NH, Djoko KY, Veyrier FJ, McEwan AG., Front Microbiol 7(), 2016
PMID: 26973631
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
Witthoff S, Schmitz K, Niedenführ S, Nöh K, Noack S, Bott M, Marienhagen J., Appl Environ Microbiol 81(6), 2015
PMID: 25595770
Redox regulation by reversible protein S-thiolation in bacteria.
Loi VV, Rossius M, Antelmann H., Front Microbiol 6(), 2015
PMID: 25852656
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26276544
Four Components of the Conjugated Redox System in Organisms: Carbon, Nitrogen, Sulfur, Oxygen.
Tereshina EV, Laskavy VN, Ivanenko SI., Biochemistry (Mosc) 80(9), 2015
PMID: 26555471
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Götker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J Biotechnol 192 Pt B(), 2014
PMID: 24486440

87 References

Daten bereitgestellt von Europe PubMed Central.

Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties.
Ando M, Yoshimoto T, Ogushi S, Rikitake K, Shibata S, Tsuru D., J. Biochem. 85(5), 1979
PMID: 571868
Ethanol catabolism in Corynebacterium glutamicum.
Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 15(4), 2007
PMID: 17693703
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Perspectives on formaldehyde toxicity: separating fact from fantasy.
Chang CC, Gershwin ME., Regul. Toxicol. Pharmacol. 16(2), 1992
PMID: 1438995
Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph.
Chistoserdova L, Gomelsky L, Vorholt JA, Gomelsky M, Tsygankov YD, Lidstrom ME., Microbiology (Reading, Engl.) 146 ( Pt 1)(), 2000
PMID: 10658669
Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose.
Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND., Eur. J. Biochem. 254(1), 1998
PMID: 9652400


Cross-functionalities of Bacillus deacetylases involved in bacillithiol biosynthesis and bacillithiol-S-conjugate detoxification pathways.
Fang Z, Roberts AA, Weidman K, Sharma SV, Claiborne A, Hamilton CJ, Dos Santos PC., Biochem. J. 454(2), 2013
PMID: 23758290
The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum.
Feng J, Che Y, Milse J, Yin YJ, Liu L, Ruckert C, Shen XH, Qi SW, Kalinowski J, Liu SJ., J. Biol. Chem. 281(16), 2006
PMID: 16481315
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J. Biotechnol. 104(1-3), 2003
PMID: 12948633
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza.
Gutheil WG, Kasimoglu E, Nicholson PC., Biochem. Biophys. Res. Commun. 238(3), 1997
PMID: 9333139
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway.
Hibi M, Sonoki T, Mori H., FEMS Microbiol. Lett. 253(2), 2005
PMID: 16242864
Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1.
Jaureguibeitia A, Saa L, Llama MJ, Serra JL., Appl. Microbiol. Biotechnol. 73(5), 2006
PMID: 16944126

AUTHOR UNKNOWN, Microb. Cell Fact. 12(), 2013
The mechanism of the condensation of formaldehyde with tetrahydrofolic acid.
Kallen RG, Jencks WP., J. Biol. Chem. 241(24), 1966
PMID: 5954363
The physiological role of the ribulose monophosphate pathway in bacteria and archaea.
Kato N, Yurimoto H, Thauer RK., Biosci. Biotechnol. Biochem. 70(1), 2006
PMID: 16428816
Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R.
Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J, Yukawa H., Appl. Microbiol. Biotechnol. 76(6), 2007
PMID: 17646983
The metabolic role of human ADH3 functioning as ethanol dehydrogenase.
Lee SL, Wang MF, Lee AI, Yin SJ., FEBS Lett. 544(1-3), 2003
PMID: 12782305
NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.
Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF., Appl. Environ. Microbiol. 73(15), 2007
PMID: 17545325
Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum.
Liu YB, Long MX, Yin YJ, Si MR, Zhang L, Lu ZQ, Wang Y, Shen XH., Arch. Microbiol. 195(6), 2013
PMID: 23615850
Formaldehyde cytotoxicity in three human cell types assessed in three different assays.
Lovschall H, Eiskjaer M, Arenholt-Bindslev D., Toxicol In Vitro 16(1), 2002
PMID: 11812641

AUTHOR UNKNOWN, Biochem. J. 350(), 2000
CDD: a Conserved Domain Database for the functional annotation of proteins.
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH., Nucleic Acids Res. 39(Database issue), 2010
PMID: 21109532
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr. Microbiol. 51(1), 2005
PMID: 15971090
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes.
Newton GL, Arnold K, Price MS, Sherrill C, Delcardayre SB, Aharonowitz Y, Cohen G, Davies J, Fahey RC, Davis C., J. Bacteriol. 178(7), 1996
PMID: 8606174
Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria.
Newton GL, Buchmeier N, Fahey RC., Microbiol. Mol. Biol. Rev. 72(3), 2008
PMID: 18772286
Bacillithiol is an antioxidant thiol produced in Bacilli.
Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, Hamilton CJ, Claiborne A, Helmann JD, Fahey RC., Nat. Chem. Biol. 5(9), 2009
PMID: 19578333
CoryneRegNet 6.0--Updated database content, new analysis methods and novel features focusing on community demands.
Pauling J, Rottger R, Tauch A, Azevedo V, Baumbach J., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22080556

AUTHOR UNKNOWN, Atmos Chem Phys 12(), 2012
C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum.
Peters-Wendisch PG, Wendisch VF, de Graaf AA, Eikmanns BJ, Sahm H., Arch. Microbiol. 165(6), 1996
PMID: 8661932
Metabolic engineering of Corynebacterium glutamicum for L-serine production.
Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L., Appl. Environ. Microbiol. 71(11), 2005
PMID: 16269752
A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1.
Pomper BK, Vorholt JA, Chistoserdova L, Lidstrom ME, Thauer RK., Eur. J. Biochem. 261(2), 1999
PMID: 10215859
Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii.
Schute H, Flossdorf J, Sahm H, Kula MR., Eur. J. Biochem. 62(1), 1976
PMID: 1248477
Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum.
Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Kramer R., J. Biol. Chem. 271(10), 1996
PMID: 8621394
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum.
Stolz M, Peters-Wendisch P, Etterich H, Gerharz T, Faurie R, Sahm H, Fersterra H, Eggeling L., Appl. Environ. Microbiol. 73(3), 2006
PMID: 17142381
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Stolzenberger J, Lindner SN, Wendisch VF., Microbiology (Reading, Engl.) 159(Pt 8), 2013
PMID: 23760818

Use of T7 RNA polymerase to direct expression of cloned genes.
Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW., Meth. Enzymol. 185(), 1990
PMID: 2199796
Effect of formaldehyde on cell proliferation and death.
Szende B, Tyihak E., Cell Biol. Int. 34(12), 2010
PMID: 21067524
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668

AUTHOR UNKNOWN, Chem. Biol. Interact. 130132(), 2001
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., Nucleic Acids Res. 25(24), 1997
PMID: 9396791
An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde.
Tralau T, Lafite P, Levy C, Combe JP, Scrutton NS, Leys D., J. Biol. Chem. 284(26), 2009
PMID: 19369258
Glutathione-independent formaldehyde dehydrogenase from Pseudomons putida: survey of functional groups with special regard for cysteine residues.
Tsuru D, Oda N, Matsuo Y, Ishikawa S, Ito K, Yoshimoto T., Biosci. Biotechnol. Biochem. 61(8), 1997
PMID: 9301119
Formaldehyde cycle and the natural formaldehyde generators and capturers.
Tyihak E, Albert L, Nemeth ZI, Katay G, Kiraly-Veghely Z, Szende B., Acta. Biol. Hung. 49(2-4), 1998
PMID: 10526965
Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.
Vorholt JA, Marx CJ, Lidstrom ME, Thauer RK., J. Bacteriol. 182(23), 2000
PMID: 11073907


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 24065717
PubMed | Europe PMC

Suchen in

Google Scholar